Articles | Volume 9, issue 7
https://doi.org/10.5194/wes-9-1507-2024
https://doi.org/10.5194/wes-9-1507-2024
Research article
 | 
12 Jul 2024
Research article |  | 12 Jul 2024

Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm

Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen

Model code and software

NREL/FLORIS Version 3.4 R. Mudafort et al. https://doi.org/10.5281/zenodo.7942258

Optuna Optuna https://github.com/optuna/optuna

Download
Short summary
Wind farm yield assessment often relies on analytical wake models. Calibrating these models can be challenging due to the stochastic nature of wind. We developed a calibration framework that performs a multi-phase optimization on the tuning parameters using time series SCADA data. This yields a parameter distribution that more accurately reflects reality than a single value. Results revealed notable variation in resultant parameter values, influenced by nearby wind farms and coastal effects.
Altmetrics
Final-revised paper
Preprint