Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2195-2024
https://doi.org/10.5194/wes-9-2195-2024
Research article
 | 
14 Nov 2024
Research article |  | 14 Nov 2024

Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems

Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff

Related authors

A listening experiment exploring the relationship between noise annoyance and sound quality metrics for airborne energy systems
Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet van Gool, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-125,https://doi.org/10.5194/wes-2024-125, 2024
Preprint under review for WES
Short summary
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-87,https://doi.org/10.5194/wes-2024-87, 2024
Revised manuscript accepted for WES
Short summary
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024,https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary
Offshore wind farm optimisation: a comparison of performance between regular and irregular wind turbine layouts
Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes
Wind Energ. Sci., 8, 1225–1233, https://doi.org/10.5194/wes-8-1225-2023,https://doi.org/10.5194/wes-8-1225-2023, 2023
Short summary
Clustering wind profile shapes to estimate airborne wind energy production
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020,https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Airborne technology
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-87,https://doi.org/10.5194/wes-2024-87, 2024
Revised manuscript accepted for WES
Short summary
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024,https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary
Dynamic analysis of the tensegrity structure of a rotary airborne wind energy machine
Gonzalo Sánchez-Arriaga, Álvaro Cerrillo-Vacas, Daniel Unterweger, and Christof Beaupoil
Wind Energ. Sci., 9, 1273–1287, https://doi.org/10.5194/wes-9-1273-2024,https://doi.org/10.5194/wes-9-1273-2024, 2024
Short summary
Wake characteristics of a balloon wind turbine and aerodynamic analysis of its balloon using a large eddy simulation and actuator disk model
Aref Ehteshami and Mostafa Varmazyar
Wind Energ. Sci., 8, 1771–1793, https://doi.org/10.5194/wes-8-1771-2023,https://doi.org/10.5194/wes-8-1771-2023, 2023
Short summary
Refining the airborne wind energy system power equations with a vortex wake model
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 1639–1650, https://doi.org/10.5194/wes-8-1639-2023,https://doi.org/10.5194/wes-8-1639-2023, 2023
Short summary

Cited articles

Anderson, J. D.: Fundamentals of Aerodynamics, 6th Edn., McGraw-Hill, ISBN 1259129918, 2016. a
Argatov, I., Rautakorpi, P., and Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator, Renew. Energ., 34, 1525–1532, https://doi.org/10.1016/j.renene.2008.11.001, 2009. a
Bartsch, T., Knipper, P., Grazianski, S., Noga, R., and Paulig, X.: SkySails PN-14 Power Curve Measurement, in: The 10th International Airborne Wind Energy Conference (AWEC 2024): Book of Abstracts, edited by: Sánchez-Arriaga, G., Thoms, S., and Schmehl, R., Delft University of Technology, Madrid, Spain, http://resolver.tudelft.nl/uuid:24968992-e316-4fa5-be53-4b601f92bf09 (last access: 8 November 2024), 2024. a, b
Bechtle, P., Schelbergen, M., Schmehl, R., Zillmann, U., and Watson, S.: Airborne wind energy resource analysis, Renew. Energ., 141, 1103–1116, https://doi.org/10.1016/j.renene.2019.03.118, 2019. a
Bonnin, V.: An Analytical Performance Model for AP-4 Conceptual Design Phase, in: The 8th International Airborne Wind Energy Conference (AWEC 2019): Book of Abstracts, edited by: Schmehl, R. and Tulloch, O., University of Strathclyde | Delft University of Technology, Glasgow, United Kingdom, https://repository.tudelft.nl/record/uuid:e0a4471b-c11b-4c47-b409-45d62974ce94 (last access: 8 November 2024), 2019. a
Download
Short summary
This paper presents a fast cycle–power computation model for fixed-wing ground-generation airborne wind energy systems. It is suitable for sensitivity and scalability studies, which makes it a valuable tool for design and innovation trade-offs. It is also suitable for integration with cost models and systems engineering tools, enhancing its applicability in assessing the potential of airborne wind energy in the broader energy system.
Altmetrics
Final-revised paper
Preprint