Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2195-2024
https://doi.org/10.5194/wes-9-2195-2024
Research article
 | 
14 Nov 2024
Research article |  | 14 Nov 2024

Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems

Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff

Related authors

System design and scaling trends in airborne wind energy demonstrated for a ground-generation concept
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci., 10, 695–718, https://doi.org/10.5194/wes-10-695-2025,https://doi.org/10.5194/wes-10-695-2025, 2025
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Airborne technology
A small-scale and autonomous testbed for three-line delta kites applied to airborne wind energy
Francisco DeLosRíos-Navarrete, Jorge González-García, Iván Castro-Fernández, and Gonzalo Sánchez-Arriaga
Wind Energ. Sci., 10, 1153–1166, https://doi.org/10.5194/wes-10-1153-2025,https://doi.org/10.5194/wes-10-1153-2025, 2025
Short summary
System design and scaling trends in airborne wind energy demonstrated for a ground-generation concept
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci., 10, 695–718, https://doi.org/10.5194/wes-10-695-2025,https://doi.org/10.5194/wes-10-695-2025, 2025
Short summary
Flight guidance concept for the launching and landing phase of a flying wing used in an airborne wind energy system
Dominik Felix Duda, Hendrik Fuest, Tobias Islam, and Dieter Moormann
Wind Energ. Sci., 10, 661–678, https://doi.org/10.5194/wes-10-661-2025,https://doi.org/10.5194/wes-10-661-2025, 2025
Short summary
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci., 9, 2261–2282, https://doi.org/10.5194/wes-9-2261-2024,https://doi.org/10.5194/wes-9-2261-2024, 2024
Short summary
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024,https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary

Cited articles

Anderson, J. D.: Fundamentals of Aerodynamics, 6th Edn., McGraw-Hill, ISBN 1259129918, 2016. a
Argatov, I., Rautakorpi, P., and Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator, Renew. Energ., 34, 1525–1532, https://doi.org/10.1016/j.renene.2008.11.001, 2009. a
Bartsch, T., Knipper, P., Grazianski, S., Noga, R., and Paulig, X.: SkySails PN-14 Power Curve Measurement, in: The 10th International Airborne Wind Energy Conference (AWEC 2024): Book of Abstracts, edited by: Sánchez-Arriaga, G., Thoms, S., and Schmehl, R., Delft University of Technology, Madrid, Spain, http://resolver.tudelft.nl/uuid:24968992-e316-4fa5-be53-4b601f92bf09 (last access: 8 November 2024), 2024. a, b
Bechtle, P., Schelbergen, M., Schmehl, R., Zillmann, U., and Watson, S.: Airborne wind energy resource analysis, Renew. Energ., 141, 1103–1116, https://doi.org/10.1016/j.renene.2019.03.118, 2019. a
Bonnin, V.: An Analytical Performance Model for AP-4 Conceptual Design Phase, in: The 8th International Airborne Wind Energy Conference (AWEC 2019): Book of Abstracts, edited by: Schmehl, R. and Tulloch, O., University of Strathclyde | Delft University of Technology, Glasgow, United Kingdom, https://repository.tudelft.nl/record/uuid:e0a4471b-c11b-4c47-b409-45d62974ce94 (last access: 8 November 2024), 2019. a
Download
Short summary
This paper presents a fast cycle–power computation model for fixed-wing ground-generation airborne wind energy systems. It is suitable for sensitivity and scalability studies, which makes it a valuable tool for design and innovation trade-offs. It is also suitable for integration with cost models and systems engineering tools, enhancing its applicability in assessing the potential of airborne wind energy in the broader energy system.
Share
Altmetrics
Final-revised paper
Preprint