Articles | Volume 9, issue 12
https://doi.org/10.5194/wes-9-2283-2024
https://doi.org/10.5194/wes-9-2283-2024
Research article
 | 
05 Dec 2024
Research article |  | 05 Dec 2024

Designing wind turbines for profitability in the day-ahead market

Mihir Kishore Mehta, Michiel Zaaijer, and Dominic von Terzi

Related authors

Drivers for optimum sizing of wind turbines for offshore wind farms
Mihir Mehta, Michiel Zaaijer, and Dominic von Terzi
Wind Energ. Sci., 9, 141–163, https://doi.org/10.5194/wes-9-141-2024,https://doi.org/10.5194/wes-9-141-2024, 2024
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Systems engineering
Aerodynamic effects of leading-edge erosion in wind farm flow modeling
Jens Visbech, Tuhfe Göçmen, Özge Sinem Özçakmak, Alexander Meyer Forsting, Ásta Hannesdóttir, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 1811–1826, https://doi.org/10.5194/wes-9-1811-2024,https://doi.org/10.5194/wes-9-1811-2024, 2024
Short summary
Control co-design optimization of floating offshore wind turbines with tuned liquid multi-column dampers
Wei Yu, Sheng Tao Zhou, Frank Lemmer, and Po Wen Cheng
Wind Energ. Sci., 9, 1053–1068, https://doi.org/10.5194/wes-9-1053-2024,https://doi.org/10.5194/wes-9-1053-2024, 2024
Short summary
Knowledge engineering for wind energy
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024,https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
HyDesign: a tool for sizing optimization of grid-connected hybrid power plants including wind, solar photovoltaic, and lithium-ion batteries
Juan Pablo Murcia Leon, Hajar Habbou, Mikkel Friis-Møller, Megha Gupta, Rujie Zhu, and Kaushik Das
Wind Energ. Sci., 9, 759–776, https://doi.org/10.5194/wes-9-759-2024,https://doi.org/10.5194/wes-9-759-2024, 2024
Short summary
Drivers for optimum sizing of wind turbines for offshore wind farms
Mihir Mehta, Michiel Zaaijer, and Dominic von Terzi
Wind Energ. Sci., 9, 141–163, https://doi.org/10.5194/wes-9-141-2024,https://doi.org/10.5194/wes-9-141-2024, 2024
Short summary

Cited articles

Ashuri, T., Zaaijer, M. B., Martins, J. R., and Zhang, J.: Multidisciplinary design optimization of large wind turbines – Technical, economic, and design challenges, Energ. Convers. Manage., 123, 56–70, https://doi.org/10.1016/J.ENCONMAN.2016.06.004, 2016. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, 2014. a
Bortolotti, P., Bay, C., Barter, G., Gaertner, E., Dykes, K., McWilliam, M., Friis-Moller, M., Molgaard Pedersen, M., and Zahle, F.: System Modeling Frameworks for Wind Turbines and Plants: Review and Requirements Specifications, Tech. Rep. March, https://www.nrel.gov/docs/fy22osti/82621.pdf (last access: 15 October 2023), 2022. a
BVG Associates: Guide to an offshore wind farm, https://guidetoanoffshorewindfarm.com/guide (last access: 12 Feburary 2024), 2019. a
Chehouri, A., Younes, R., Ilinca, A., and Perron, J.: Review of performance optimization techniques applied to wind turbines, Appl. Energ., 142, 361–388, https://doi.org/10.1016/J.APENERGY.2014.12.043, 2015. a
Short summary
In a subsidy-free era, there is a need to optimize wind turbines for maximizing farm revenue instead of minimizing cost of energy. A wind-farm-level modeling framework with a simplified market model is used to optimize the turbine size for maximum profitability. The results show that the optimum size is driven mainly by the choice of the economic metric and the market price scenario, with a design optimized for the cost of energy already performing well w.r.t. most profitability-based metrics
Altmetrics
Final-revised paper
Preprint