Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-281-2024
https://doi.org/10.5194/wes-9-281-2024
Research article
 | 
02 Feb 2024
Research article |  | 02 Feb 2024

Optimal position and distribution mode for on-site hydrogen electrolyzers in onshore wind farms for a minimal levelized cost of hydrogen (LCoH)

Thorsten Reichartz, Georg Jacobs, Tom Rathmes, Lucas Blickwedel, and Ralf Schelenz

Related authors

Wind turbine drivetrains: state-of-the-art technologies and future development trends
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022,https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Reducing cost uncertainty in the drivetrain design decision with a focus on the operational phase
Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 571–584, https://doi.org/10.5194/wes-6-571-2021,https://doi.org/10.5194/wes-6-571-2021, 2021
Short summary
Method for airborne measurement of the spatial wind speed distribution above complex terrain
Christian Ingenhorst, Georg Jacobs, Laura Stößel, Ralf Schelenz, and Björn Juretzki
Wind Energ. Sci., 6, 427–440, https://doi.org/10.5194/wes-6-427-2021,https://doi.org/10.5194/wes-6-427-2021, 2021
Short summary
Future economic perspective and potential revenue of non-subsidized wind turbines in Germany
Lucas Blickwedel, Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 177–190, https://doi.org/10.5194/wes-6-177-2021,https://doi.org/10.5194/wes-6-177-2021, 2021
Short summary
Design study for a multicomponent transducer for wind turbine test benches
Jonas Gnauert, Georg Jacobs, Stefan Kock, Dennis Bosse, and Benjamin Janik
J. Sens. Sens. Syst., 9, 239–249, https://doi.org/10.5194/jsss-9-239-2020,https://doi.org/10.5194/jsss-9-239-2020, 2020
Short summary

Related subject area

Thematic area: Electrical conversion, integration and impacts | Topic: Electrical conversion, grid integration, and Wind-to-X
Optimal allocation of 30 GW offshore wind power in the Norwegian economic zone
Sondre Hølleland, Geir Drage Berentsen, Håkon Otneim, and Ida Marie Solbrekke
Wind Energ. Sci., 10, 293–313, https://doi.org/10.5194/wes-10-293-2025,https://doi.org/10.5194/wes-10-293-2025, 2025
Short summary
Functional specifications and testing requirements for grid-forming offshore wind power plants
Sulav Ghimire, Gabriel Miguel Gomes Guerreiro, Kanakesh Vatta Kkuni, Emerson David Guest, Kim Høj Jensen, Guangya Yang, and Xiongfei Wang
Wind Energ. Sci., 10, 1–15, https://doi.org/10.5194/wes-10-1-2025,https://doi.org/10.5194/wes-10-1-2025, 2025
Short summary
Grand challenges of wind energy science – meeting the needs and services of the power system
Mark O'Malley, Hannele Holttinen, Nicolaos Cutululis, Til Kristian Vrana, Jennifer King, Vahan Gevorgian, Xiongfei Wang, Fatemeh Rajaei-Najafabadi, and Andreas Hadjileonidas
Wind Energ. Sci., 9, 2087–2112, https://doi.org/10.5194/wes-9-2087-2024,https://doi.org/10.5194/wes-9-2087-2024, 2024
Short summary
Optimizing offshore wind export cable routing using GIS-based environmental heat maps
Joni Thomas Backstrom, Nicholas Mark Warden, and Colleen Marie Walsh
Wind Energ. Sci., 9, 1105–1121, https://doi.org/10.5194/wes-9-1105-2024,https://doi.org/10.5194/wes-9-1105-2024, 2024
Short summary
A critical review of challenges and opportunities for the design and operation of offshore structures supporting renewable hydrogen production, storage, and transport
Claudio Alexis Rodríguez Castillo, Baran Yeter, Shen Li, Feargal Brennan, and Maurizio Collu
Wind Energ. Sci., 9, 533–554, https://doi.org/10.5194/wes-9-533-2024,https://doi.org/10.5194/wes-9-533-2024, 2024
Short summary

Cited articles

ACEA: Fuel types of new trucks: electric 0.6 %, diesel 96.6 % market share full-year 2022, https://www.acea.auto/fuel-cv/fuel-types-of-new-trucks-electric-0-6-diesel-96-6-market-share-full-year-2022/, last access: 20 June 2023. 
Adolf, J., Balzer, C., Haase, F., Lenz, B., Lischke, A., and Knitschky, G.: Shell Nutzfahrzeug-Studie: Diesel oder alternative Antriebe – womit fahren LKW und Bus morgen?, Shell Deutschland, DLR, 2016. 
Adolf, J., Balzer, C., Louis, J., Schabla, U., Fischedick, M., Arnold, K., Pastowski, A., and Schüwer, D.: Shell Wasserstoff-Studie Energie der Zukunft?: Nachhaltige Moblität durch Brennstoffzelle und H2, Shell Deutschland, Wuppertal Institut, 2017. 
Ajanovic, A., Sayer, M., and Haas, R.: The economics and the environmental benignity of different colors of hydrogen, Int. J. Hydrogen Energ., 47, 24136–24154, https://doi.org/10.1016/j.ijhydene.2022.02.094, 2022. 
Baufumé, S., Grüger, F., Grube, T., Krieg, D., Linssen, J., Weber, M., Hake, J.-F., and Stolten, D.: GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure, Int. J. Hydrogen Energ., 38, 3813–3829, https://doi.org/10.1016/j.ijhydene.2012.12.147, 2013. 
Download
Short summary
The production of green hydrogen from wind power is a promising approach to store energy from renewable energy sources. This work proposes a method to optimize the design of wind–hydrogen systems for onshore wind farms in order to achieve the lowest hydrogen cost. Therefore, the electrolyzer position and the optimal hydrogen transport mode are calculated specifically for a wind farm site. This results in a reduction of up to 10 % of the hydrogen production cost.
Share
Altmetrics
Final-revised paper
Preprint