Articles | Volume 9, issue 2
https://doi.org/10.5194/wes-9-417-2024
https://doi.org/10.5194/wes-9-417-2024
Research article
 | 
21 Feb 2024
Research article |  | 21 Feb 2024

A novel techno-economical layout optimization tool for floating wind farm design

Amalia Ida Hietanen, Thor Heine Snedker, Katherine Dykes, and Ilmas Bayati

Related authors

Data-Driven Surrogate Models for Real-Time Fatigue Monitoring of Chain Mooring Lines in Floating Wind Turbines
Azélice Ludot, Thor Heine Snedker, Athanasios Kolios, and Ilmas Bayati
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-162,https://doi.org/10.5194/wes-2024-162, 2025
Revised manuscript has not been submitted
Short summary
Probabilistic lifetime extension assessment using mid-term data: Lillgrund wind farm case study
Shadan Mozafari, Jennifer Rinker, Paul Veers, and Katherine Dykes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-68,https://doi.org/10.5194/wes-2024-68, 2024
Revised manuscript under review for WES
Short summary
Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024,https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Grand Challenges in Social Aspects of Wind Energy Development
Lena Kitzing, David Rudolph, Sophie Nyborg, Helena Solman, Tom Cronin, Gundula Hübner, Elizabeth Gill, Katherine Dykes, Suzanne Tegen, and Julia Kirch Kirkegaard
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-174,https://doi.org/10.5194/wes-2023-174, 2024
Preprint withdrawn
Short summary
Offshore wind farm optimisation: a comparison of performance between regular and irregular wind turbine layouts
Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes
Wind Energ. Sci., 8, 1225–1233, https://doi.org/10.5194/wes-8-1225-2023,https://doi.org/10.5194/wes-8-1225-2023, 2023
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
State-of-the-art efficiency determination of a wind turbine drivetrain on a nacelle test bench
Hongkun Zhang, Paula Weidinger, Christian Mester, Zihang Song, Marcel Heller, Alexander Dubowik, Bernd Tegtmeier, and Karin Eustorgi
Wind Energ. Sci., 10, 1625–1636, https://doi.org/10.5194/wes-10-1625-2025,https://doi.org/10.5194/wes-10-1625-2025, 2025
Short summary
Offshore wind farm layout optimization with alignment constraints
Paul Malisani, Tristan Bartement, and Pauline Bozonnet
Wind Energ. Sci., 10, 1611–1623, https://doi.org/10.5194/wes-10-1611-2025,https://doi.org/10.5194/wes-10-1611-2025, 2025
Short summary
A parcel-level evaluation of distributed wind opportunity in the contiguous United States
Jane Lockshin, Paula Pérez, Slater Podgorny, Michaela Sizemore, Paritosh Das, Jeffrey D. Laurence-Chasen, Paul Crook, and Caleb Phillips
Wind Energ. Sci., 10, 1231–1248, https://doi.org/10.5194/wes-10-1231-2025,https://doi.org/10.5194/wes-10-1231-2025, 2025
Short summary
Probabilistic cost modeling as a basis for optimizing inspection and maintenance of turbine support structures in offshore wind farms
Muhammad Farhan, Ronald Schneider, Sebastian Thöns, and Max Gündel
Wind Energ. Sci., 10, 461–481, https://doi.org/10.5194/wes-10-461-2025,https://doi.org/10.5194/wes-10-461-2025, 2025
Short summary
Wind Turbine Gearbox Operation Monitoring Using High-Resolution Distributed Fiber Optic Sensing
Linqing Luo, Unai Gutierrez Santiago, and Yuxin Wu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-1,https://doi.org/10.5194/wes-2025-1, 2025
Revised manuscript accepted for WES
Short summary

Cited articles

Charhouni, N., Sallaou, M., and Mansouri, K.: Realistic wind farm design layout optimization with different wind turbines types, Int. J. Energ. Environ. Eng., 10, 307–318, https://doi.org/10.1007/s40095-019-0303-2, 2019. a, b
DTOcean: Deliverable 4.6: Framework for the prediction of the reliability, economic and environmental criteria and assessment methodologies for Moorings and Foundations, in: DTOcean – Optimal Design Tools for Ocean Energy Arrays, https://www.researchgate.net/publication/308265985_Framework_for_the_prediction_of_the_reliability_economic_and_environmental_criteria_and_assessment_methodologies_for_Moorings_and_Foundations_Deliverable_46_of_the_DTOcean_project (last access: 19 February 2024), 2015. a
EMD: windPRO 3.6 User Manual: OPTIMIZE, EMD International A/S, https://help.emd.dk/knowledgebase/content/windPRO3.6/c8-UK_WindPRO3.6-OPTIMIZATION.pdf (last access: 19 February 2024), 2022. a
Feng, J. and Shen, W. Z.: Solving the wind farm layout optimization problem using random search algorithm, Renew. Energy, 78, 182–192, https://doi.org/10.1016/j.renene.2015.01.005, 2015. a
Froese, G., Ku, S. Y., Kheirabadi, A. C., and Nagamune, R.: Optimal layout design of floating offshore wind farms, Renew. Energy, 190, 94–102, https://doi.org/10.1016/j.renene.2022.03.104, 2022. a, b
Download
Short summary
The layout of a floating offshore wind farm was optimized to maximize the relative net present value (NPV). By modeling power generation, losses, inter-array cables, anchors and operational costs, an increase of EUR 34.5 million in relative NPV compared to grid-based layouts was achieved. A sensitivity analysis was conducted to examine the impact of economic factors, providing valuable insights. This study contributes to enhancing the efficiency and cost-effectiveness of floating wind farms.
Share
Altmetrics
Final-revised paper
Preprint