Articles | Volume 9, issue 2
https://doi.org/10.5194/wes-9-417-2024
https://doi.org/10.5194/wes-9-417-2024
Research article
 | 
21 Feb 2024
Research article |  | 21 Feb 2024

A novel techno-economical layout optimization tool for floating wind farm design

Amalia Ida Hietanen, Thor Heine Snedker, Katherine Dykes, and Ilmas Bayati

Related authors

Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024,https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Grand Challenges in Social Aspects of Wind Energy Development
Lena Kitzing, David Rudolph, Sophie Nyborg, Helena Solman, Tom Cronin, Gundula Hübner, Elizabeth Gill, Katherine Dykes, Suzanne Tegen, and Julia Kirch Kirkegaard
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-174,https://doi.org/10.5194/wes-2023-174, 2024
Manuscript not accepted for further review
Short summary
Offshore wind farm optimisation: a comparison of performance between regular and irregular wind turbine layouts
Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes
Wind Energ. Sci., 8, 1225–1233, https://doi.org/10.5194/wes-8-1225-2023,https://doi.org/10.5194/wes-8-1225-2023, 2023
Short summary
Grand Challenges: wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022,https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Wind farm flow control: prospects and challenges
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022,https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
Mesoscale modelling of North Sea wind resources with COSMO-CLM: model evaluation and impact assessment of future wind farm characteristics on cluster-scale wake losses
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 697–719, https://doi.org/10.5194/wes-9-697-2024,https://doi.org/10.5194/wes-9-697-2024, 2024
Short summary
Gradient-based wind farm layout optimization with inclusion and exclusion zones
Javier Criado Risco, Rafael Valotta Rodrigues, Mikkel Friis-Møller, Julian Quick, Mads Mølgaard Pedersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 585–600, https://doi.org/10.5194/wes-9-585-2024,https://doi.org/10.5194/wes-9-585-2024, 2024
Short summary
Hybrid-Lambda: a low-specific-rating rotor concept for offshore wind turbines
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024,https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary
Speeding up large-wind-farm layout optimization using gradients, parallelization, and a heuristic algorithm for the initial layout
Rafael Valotta Rodrigues, Mads Mølgaard Pedersen, Jens Peter Schøler, Julian Quick, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 321–341, https://doi.org/10.5194/wes-9-321-2024,https://doi.org/10.5194/wes-9-321-2024, 2024
Short summary
Nonlinear vibration characteristics of virtual mass systems for wind turbine blade fatigue testing
Aiguo Zhou, Jinlei Shi, Tao Dong, Yi Ma, and Zhenhui Weng
Wind Energ. Sci., 9, 49–64, https://doi.org/10.5194/wes-9-49-2024,https://doi.org/10.5194/wes-9-49-2024, 2024
Short summary

Cited articles

Charhouni, N., Sallaou, M., and Mansouri, K.: Realistic wind farm design layout optimization with different wind turbines types, Int. J. Energ. Environ. Eng., 10, 307–318, https://doi.org/10.1007/s40095-019-0303-2, 2019. a, b
DTOcean: Deliverable 4.6: Framework for the prediction of the reliability, economic and environmental criteria and assessment methodologies for Moorings and Foundations, in: DTOcean – Optimal Design Tools for Ocean Energy Arrays, https://www.researchgate.net/publication/308265985_Framework_for_the_prediction_of_the_reliability_economic_and_environmental_criteria_and_assessment_methodologies_for_Moorings_and_Foundations_Deliverable_46_of_the_DTOcean_project (last access: 19 February 2024), 2015. a
EMD: windPRO 3.6 User Manual: OPTIMIZE, EMD International A/S, https://help.emd.dk/knowledgebase/content/windPRO3.6/c8-UK_WindPRO3.6-OPTIMIZATION.pdf (last access: 19 February 2024), 2022. a
Feng, J. and Shen, W. Z.: Solving the wind farm layout optimization problem using random search algorithm, Renew. Energy, 78, 182–192, https://doi.org/10.1016/j.renene.2015.01.005, 2015. a
Froese, G., Ku, S. Y., Kheirabadi, A. C., and Nagamune, R.: Optimal layout design of floating offshore wind farms, Renew. Energy, 190, 94–102, https://doi.org/10.1016/j.renene.2022.03.104, 2022. a, b
Download
Short summary
The layout of a floating offshore wind farm was optimized to maximize the relative net present value (NPV). By modeling power generation, losses, inter-array cables, anchors and operational costs, an increase of EUR 34.5 million in relative NPV compared to grid-based layouts was achieved. A sensitivity analysis was conducted to examine the impact of economic factors, providing valuable insights. This study contributes to enhancing the efficiency and cost-effectiveness of floating wind farms.
Altmetrics
Final-revised paper
Preprint