Articles | Volume 10, issue 1
https://doi.org/10.5194/wes-10-17-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-17-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of vortex-shedding regimes and lock-in response of a wind turbine airfoil with two high-fidelity simulation approaches
Ricardo Fernandez-Aldama
CORRESPONDING AUTHOR
Aircraft and Space Vehicles Department, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040, Madrid, Spain
George Papadakis
School of Naval Architecture and Marine Engineering, National Technical University of Athens (NTUA), 9, Heroon Polytechniou Str, 15780, Athens, Greece
Oscar Lopez-Garcia
Aircraft and Space Vehicles Department, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040, Madrid, Spain
Sergio Avila-Sanchez
Aircraft and Space Vehicles Department, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040, Madrid, Spain
Vasilis A. Riziotis
School of Mechanical Engineering, National Technical University of Athens (NTUA), 9, Heroon Polytechniou Str, 15780, Athens, Greece
Alvaro Cuerva-Tejero
Aircraft and Space Vehicles Department, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040, Madrid, Spain
Cristobal Gallego-Castillo
Aircraft and Space Vehicles Department, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040, Madrid, Spain
Related authors
No articles found.
Dimitris Vlastos, Niki Tzimi, Georgia Trampa, Vasilis Riziotis, Dimitris Manolas, and Nikos Spyropoulos
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-231, https://doi.org/10.5194/wes-2025-231, 2025
Preprint under review for WES
Short summary
Short summary
Vibrations in wind turbines caused by wake vortices are well known but difficult to predict during design. This study examines a calibrated mathematical model replicating a cantilevered cylinder experiment under vibration-prone conditions. Results show the model’s ability to capture the body’s response while offering greater insight than current state-of-the-art prediction tools.
Emmanouil M. Nanos, Carlo L. Bottasso, Simone Tamaro, Dimitris I. Manolas, and Vasilis A. Riziotis
Wind Energ. Sci., 7, 1641–1660, https://doi.org/10.5194/wes-7-1641-2022, https://doi.org/10.5194/wes-7-1641-2022, 2022
Short summary
Short summary
A novel way of wind farm control is presented where the wake is deflected vertically to reduce interactions with downstream turbines. This is achieved by moving ballast in a floating offshore platform in order to pitch the support structure and thereby tilt the wind turbine rotor disk. The study considers the effects of this new form of wake control on the aerodynamics of the steering and wake-affected turbines, on the structure, and on the ballast motion system.
Cited articles
Arunachalam, S. and Lakshmanan, N.: Across-wind response of tall circular chimneys to vortex shedding, J. Wind Eng. Ind. Aerod., 145, 187–195, https://doi.org/10.1016/j.jweia.2015.06.005, 2015. a
Benner, B. M., Carlson, D. W., Seyed-Aghazadeh, B., and Modarres-Sadeghi, Y.: Vortex-Induced Vibration of symmetric airfoils used in Vertical-Axis Wind Turbines, J. Fluid. Struct., 91, 102577, https://doi.org/10.1016/j.jfluidstructs.2019.01.018, 2019. a
Bishop, R. E. D. and Hassan, A. Y.: The Lift and Drag Forces on a Circular Cylinder in a Flowing Fluid, P. R. Soc. Lond. A, 277, 32–50, http://www.jstor.org/stable/2414647 (last access: 19 December 2024), 1964. a
Cagney, N. and Balabani, S.: Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom, J. Fluid Mech., 758, 702–727, https://doi.org/10.1017/jfm.2014.521, 2014. a
Cheung, J. and Melbourne, W.: Aerodynamic damping of a circular cylinder in turbulent flow at high reynolds numbers, in: Eighth Australasian fluid mechanics conference, University of Newcastle, vol. 28, p. 13A, https://openlibrary.org/books/OL7866463M/Eighth_Australasian_Fluid_Mechanics_Conference (last access: 19 December 2024), ISBN 9780725904630, 1983. a
Christensen, O. and Askegaard, V.: Wind forces on and excitation of a 130-m concrete chimney, J. Wind Eng. Ind. Aerod., 3, 61–77, https://doi.org/10.1016/0167-6105(78)90028-4, 1978. a
de Langre, E.: Frequency lock-in is caused by coupled-mode flutter, J. Fluid. Struct., 22, 783–791, https://doi.org/10.1016/j.jfluidstructs.2006.04.008, 2006. a
Derksen, A.: Numerical simulation of a forced and freely-vibrating cylinder at supercritical Reynolds numbers, Master's thesis, TU Delft and Siemens, Delft, the Netherlands, http://resolver.tudelft.nl/uuid:4c92eee4-8378-4a40-9180-bcb72f751076 (last access: 19 December 2024), 2019. a
de Souza, L. F., Miotto, R. F., and Wolf, W. R.: Analysis of transient and intermittent flows using a multidimensional empirical mode decomposition, Theor. Comp. Fluid Dy., 38, 291–311, https://doi.org/10.1007/s00162-024-00689-y, 2024. a
Diakakis, K.: Computational analysis of transitional and massively separated flows with application to wind turbines, PhD thesis, National Technical University of Athens (NTUA), https://doi.org/10.13140/RG.2.2.14120.19206, 2019. a
Diakakis, K.: structAirfoilMesher, GitLab [code], https://gitlab.com/before_may/structAirfoilMesher (last access: 19 December 2024), 2023. a
Ellingsen, Ø. M., Amandolese, X., Flamand, O., and Hémon, P.: Twin Strouhal numbers in pressure loading of circular cylinder at high Reynolds numbers, J. Fluid. Struct., 115, 103782, https://doi.org/10.1016/j.jfluidstructs.2022.103782, 2022. a
Fage, A. and Johansen, F. C.: On the flow of air behind an inclined flat plate of infinite span, P. R. Soc. Lond. A, 116, 170–197, https://doi.org/10.1098/rspa.1927.0130, 1927. a
Feng, C.: The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders, PhD thesis, University of British Columbia, https://doi.org/10.14288/1.0104049, 1968. a
Galemann, T. and Ruscheweyh, H.: Measurements of wind induced vibrations of a full-scale steel chimney, J. Wind Eng. Ind. Aerod., 41, 241–252, https://doi.org/10.1016/0167-6105(92)90416-8, 1992. a
Gallego-Castillo, C., Cuerva-Tejero, A., and Lopez-Garcia, O.: mVARbox v1.0.0, GitHub [code], https://github.com/arya-upm/mVARbox/ (last access: 19 December 2024), 2024. a
Griffin, O., Skop, R., and Koopmann, G.: The vortex-excited resonant vibrations of circular cylinders, J. Sound Vib., 31, 235–249, https://doi.org/10.1016/S0022-460X(73)80377-3, 1973. a, b
Grinderslev, C., Houtin-Mongrolle, F., Nørmark Sørensen, N., Raimund Pirrung, G., Jacobs, P., Ahmed, A., and Duboc, B.: Forced-motion simulations of vortex-induced vibrations of wind turbine blades – a study of sensitivities, Wind Energ. Sci., 8, 1625–1638, https://doi.org/10.5194/wes-8-1625-2023, 2023. a
Hartlen, R. T. and Currie, I. G.: Lift-Oscillator Model of Vortex-Induced Vibration, J. Eng. Mech., 96, 577–591, https://doi.org/10.1061/JMCEA3.0001276, 1970. a
Heinz, J. C., Sørensen, N. N., Zahle, F., and Skrzypiński, W.: Vortex-induced vibrations on a modern wind turbine blade, Wind Energy, 19, 2041–2051, https://doi.org/10.1002/we.1967, 2016. a
Hemmati, A., Wood, D. H., and Martinuzzi, R. J.: Characteristics of distinct flow regimes in the wake of an infinite span normal thin flat plate, Int. J. Heat Fluid Flow, 62, 423–436, https://doi.org/10.1016/j.ijheatfluidflow.2016.09.001, 2016. a, b
Horcas, S. G., Sørensen, N. N., Zahle, F., Pirrung, G. R., and Barlas, T.: Vibrations of wind turbine blades in standstill: Mapping the influence of the inflow angles, Phys. Fluids, 34, 054105, https://doi.org/10.1063/5.0088036, 2022. a, b
Hu, P., Sun, C., Zhu, X., and Du, Z.: Investigations on vortex-induced vibration of a wind turbine airfoil at a high angle of attack via modal analysis, J. Renew. Sustain. Ener., 13, 033306, https://doi.org/10.1063/5.0040509, 2021. a
Iyer, S.: Unsteady aerodynamics and vortex shedding of a wind turbine blade, Master's thesis, MS thesis, Technical University of Denmark and Delft University of Technology, http://resolver.tudelft.nl/uuid:105bcf3a-8c6d-4dfe-9165-5ba42d415788 (last access: 19 December 2024), 2023. a
Jauvtis, N. and Williamson, C. H. K.: Vortex-induced vibration of a cylinder with two degrees of freedom, J. Fluid. Struct., 17, 1035–1042, https://doi.org/10.1016/S0889-9746(03)00051-3, 2003. a
Kurniawati, I., Lupi, F., Seidel, M., Höffer, R., and Niemann, H.-J.: Insights into the Transcritical Reynolds Number Range Based on Field Measurements of a Wind Turbine Tower, in: Proceedings of the XVII Conference of the Italian Association for Wind Engineering, edited by: Schito, P. and Zasso, A., 52–63, Springer Nature Switzerland, Cham, ISBN 978-3-031-53059-3, https://doi.org/10.1007/978-3-031-53059-3_6, 2024. a, b
Kurushina, V., Pavlovskaia, E., Postnikov, A., and Wiercigroch, M.: Calibration and comparison of VIV wake oscillator models for low mass ratio structures, Int. J. Mech. Sci., 142-143, 547–560, https://doi.org/10.1016/j.ijmecsci.2018.04.027, 2018. a
Lehmkuhl, O., Rodríguez, I., Borrell, R., Chiva, J., and Oliva, A.: Unsteady forces on a circular cylinder at critical Reynolds numbers, Phys. Fluid., 26, 125110, https://doi.org/10.1063/1.4904415, 2014. a
Leontini, J. S. and Thompson, M. C.: Vortex-induced vibrations of a diamond cross-section: Sensitivity to corner sharpness, J. Fluid. Struct., 39, 371–390, https://doi.org/10.1016/j.jfluidstructs.2013.01.002, 2013. a, b
Lian, B., Tong, X., Zhu, X., Du, Z., Cui, Y., and Khoo, B. C.: Investigations on lock-in vortex-induced vibration of an airfoil at a high angle of attack based on detached eddy simulation, Phys. Fluid., 35, 094105, https://doi.org/10.1063/5.0166243, 2023a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Lian, B., Tong, X., Zhu, X., Du, Z., Cui, Y., and Khoo, B. C.: Investigations on the effects of structural damping on vortex-induced vibration response of an airfoil at a high angle of attack via the aero-damping map, Phys. Fluid., 35, 064107, https://doi.org/10.1063/5.0155120, 2023b. a, b, c, d
Lian, B., Zhu, X., and Du, Z.: Investigations on bifurcation behavior of wind turbine airfoil response at a high angle of attack, Eur. J. Mech. B-Fluid., 105, 206–218, https://doi.org/10.1016/j.euromechflu.2024.01.013, 2024. a
Lilly, J. M.: Element analysis: a wavelet-based method for analysing time-localized events in noisy time series, P. R. Soc. A, 473, 20160776, https://doi.org/10.1098/rspa.2016.0776, 2017. a
Lisoski, D. L. A.: Nominally two-dimensional flow about a normal flat plate, PhD thesis, California Institute of Technology, https://doi.org/10.7907/AZEG-2T16, 1993. a
Lo, J. C., Hourigan, K., Thompson, M. C., and Zhao, J.: The effect of structural damping on flow-induced vibration of a thin elliptical cylinder, J. Fluid Mech., 974, A5, https://doi.org/10.1017/jfm.2023.776, 2023. a
Ludlam, D. V., Jacobs, P., and Ahmed, A.: Impact of rotor blade aerodynamics on tower vortex induced vibration of modern wind turbines, J. Phys. Conf. Ser., 2767, 022058, https://doi.org/10.1088/1742-6596/2767/2/022058, 2024. a
Lupi, F., Niemann, H.-J., and Höffer, R.: Aerodynamic damping model in vortex-induced vibrations for wind engineering applications, J. Wind Eng. Ind. Aerod., 174, 281–295, 2018. a
Lupi, F., Höffer, R., and Niemann, H.-J.: Aerodynamic damping in vortex resonance from aeroelastic wind tunnel tests on a stack, J. Wind Eng. Ind. Aerod., 208, 104438, https://doi.org/10.1016/j.jweia.2020.104438, 2021. a
Manolesos, M. and Papadakis, G.: Investigation of the three-dimensional flow past a flatback wind turbine airfoil at high angles of attack, Phys. Fluid., 33, 085106, https://doi.org/10.1063/5.0055822, 2021. a
Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598–1605, https://doi.org/10.2514/3.12149, 1994. a
Mittal, R. and Balachandar, S.: Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders, Phys. Fluid., 7, 1841–1865, https://doi.org/10.1063/1.868500, 1995. a
Najjar, F. M. and Balachandar, S.: Low-frequency unsteadiness in the wake of a normal flat plate, J. Fluid Mech., 370, 101–147, https://doi.org/10.1017/S0022112098002110, 1998. a, b, c, d
Nakamura, Y. and Hirata, K.: Pressure fluctuations on oscillating rectangular cylinders with the long side normal to the flow, J. Fluid. Struct., 5, 165–183, https://doi.org/10.1016/0889-9746(91)90460-7, 1991. a
Nemes, A., Zhao, J., Lo Jacono, D., and Sheridan, J.: The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack, J. Fluid Mech., 710, 102–130, https://doi.org/10.1017/jfm.2012.353, 2012. a
Newmark, N. M.: A method of computation for structural dynamics, J. Eng. Mech., 85, 67–94, https://doi.org/10.1061/JMCEA3.0000098, 1959. a
Païdoussis, M. P., Price, S. J., and de Langre, E.: Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press, https://doi.org/10.1017/CBO9780511760792, 2010. a
Papadakis, G.: Development of a hybrid compressible vortex particle method and application to external problems including helicopter flows, PhD thesis, National Technical University of Athens (NTUA), https://doi.org/10.13140/RG.2.2.26480.92168, 2014. a
Papadakis, G. and Manolesos, M.: The flow past a flatback airfoil with flow control devices: benchmarking numerical simulations against wind tunnel data, Wind Energ. Sci., 5, 911–927, https://doi.org/10.5194/wes-5-911-2020, 2020. a
Papadakis, G., Manolesos, M., Diakakis, K., and Riziotis, V. A.: DES vs RANS: The flatback airfoil case, J. Phys. Conf. Ser., 1618, 052062, https://doi.org/10.1088/1742-6596/1618/5/052062, 2020. a
Papadakis, G., Riziotis, V. A., and Voutsinas, S. G.: A hybrid Lagrangian–Eulerian flow solver applied to elastically mounted cylinders in tandem arrangement, J. Fluid. Struct., 113, 103686, https://doi.org/10.1016/j.jfluidstructs.2022.103686, 2022. a, b
Pellegrino, A. and Meskell, C.: Vortex shedding from a wind turbine blade section at high angles of attack, J. Wind Eng. Ind. Aerod., 121, 131–137, https://doi.org/10.1016/j.jweia.2013.08.002, 2013. a
Pirrung, G. R., Grinderslev, C., Sørensen, N. N., and Riva, R.: Vortex-induced vibrations of wind turbines: From single blade to full rotor simulations, Renew. Energ., 226, 120381, https://doi.org/10.1016/j.renene.2024.120381, 2024. a
Prospathopoulos, J. M., Riziotis, V. A., Schwarz, E., Barlas, T., Aparicio-Sanchez, M., Papadakis, G., Manolas, D., Pirrung, G., and Lutz, T.: Simulation of oscillating trailing edge flaps on wind turbine blades using ranging fidelity tools, Wind Energy, 24, 357–378, https://doi.org/10.1002/we.2578, 2021. a
Rigo, F., Andrianne, T., and Denoël, V.: Parameter identification of wake-oscillator from wind tunnel data, J. Fluid. Struct., 109, 103474, https://doi.org/10.1016/j.jfluidstructs.2021.103474, 2022. a, b
Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations, J. Fluid. Struct., 19, 389–447, https://doi.org/10.1016/j.jfluidstructs.2004.02.005, 2004. a
Schewe, G.: On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers, J. Fluid Mech., 133, 265–285, https://doi.org/10.1017/S0022112083001913, 1983. a, b
Skop, R. and Balasubramanian, S.: A new twist on an old model for vortex-excited vibrations, J. Fluid. Struct., 11, 395–412, https://doi.org/10.1006/jfls.1997.0085, 1997. a
Sourav, K., Kumar, D., and Sen, S.: Undamped transverse-only VIV of a diamond cylinder at low Reynolds numbers, Ocean Eng., 197, 106867, https://doi.org/10.1016/j.oceaneng.2019.106867, 2020. a
Sumer, B. M. and Fredsøe, J.: Hydrodynamics Around Cylindrical Structures, WORLD SCIENTIFIC, revised edition, https://doi.org/10.1142/6248, 2006. a
Sørensen, N. N., Méndez, B., Muñoz, A., Sieros, G., Jost, E., Lutz, T., Papadakis, G., Voutsinas, S., Barakos, G., Colonia, S., Baldacchino, D., Baptista, C., and Ferreira, C.: CFD code comparison for 2D airfoil flows, J. Phys. Conf. Ser., 753, 082019, https://doi.org/10.1088/1742-6596/753/8/082019, 2016. a
Tanida, Y., Okajima, A., and Watanabe, Y.: Stability of a circular cylinder oscillating in uniform flow or in a wake, J. Fluid Mech., 61, 769–784, https://doi.org/10.1017/S0022112073000935, 1973. a
Teimourian, A., Yazdi, S. G., and Hacisevki, H.: Vortex shedding: a review on flat plate, Fluid Dyn., 53, 212–221, https://doi.org/10.1134/S0015462818020167, 2018. a
Timmer, W. and van Rooij, R. P. J. O. M.: Some aspects of high angle-of-attack flow on airfoils for wind turbine application, in: Proceedings of the European wind energy conference “wind energy for the new millennium”, held in Copenhagen, Denmark, 2–6 July 2001, edited by: Helm, P. and Zervos, A., WIP-renewable energies, 355–358, ISBN 88-900442-9-2, 2001. a
Veers, P., Bottasso, C. L., Manuel, L., Naughton, J., Pao, L., Paquette, J., Robertson, A., Robinson, M., Ananthan, S., Barlas, T., Bianchini, A., Bredmose, H., Horcas, S. G., Keller, J., Madsen, H. A., Manwell, J., Moriarty, P., Nolet, S., and Rinker, J.: Grand challenges in the design, manufacture, and operation of future wind turbine systems, Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, 2023. a
Vickery, B. and Basu, R.: Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions, J. Wind Eng. Ind. Aerod., 12, 49–73, https://doi.org/10.1016/0167-6105(83)90080-6, 1983. a
Vickery, B. J. and Clark, A. W.: Lift or Across-Wind Response of Tapered Stacks, J. Struct. Div.-ASCE, 98, 1–20, https://doi.org/10.1061/JSDEAG.0003103, 1972. a
Viré, A., Derksen, A., Folkersma, M., and Sarwar, K.: Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers, Wind Energ. Sci., 5, 793–806, https://doi.org/10.5194/wes-5-793-2020, 2020. a
Vlastos, D., Riziotis, V. A., Papadakis, G., Manolas, D. I., and Chaviaropoulos, P. K.: Numerical investigation of vortex induced vibrations on cylinders, J. Phys. Conf. Ser., 2767, 022034, https://doi.org/10.1088/1742-6596/2767/2/022034, 2024. a
Wu, X. and Sharma, A.: Artefacts of finite span in vortex-induced vibration simulations, Appl. Ocean Res., 101, 102265, https://doi.org/10.1016/j.apor.2020.102265, 2020. a
Yu, Z., Wang, E., Bao, Y., Xiao, Q., Li, X., Incecik, A., and Lin, B.: VIV of two rigidly coupled side-by-side cylinders at subcritical Re, Int. J. Mech. Sci., 267, 108961, https://doi.org/10.1016/j.ijmecsci.2024.108961, 2024. a
Zhao, J., Nemes, A., Lo Jacono, D., and Sheridan, J.: Branch/mode competition in the flow-induced vibration of a square cylinder, Philos. T. R. Soc. A, 376, 20170243, https://doi.org/10.1098/rsta.2017.0243, 2018. a
Zhao, J., Thompson, M. C., and Hourigan, K.: Decomposition of fluid forcing and phase synchronisation for in-line vortex-induced vibration of a circular cylinder, J. Fluid Mech., 941, R4, https://doi.org/10.1017/jfm.2022.359, 2022. a
Zou, F., Riziotis, V. A., Voutsinas, S. G., and Wang, J.: Analysis of vortex-induced and stall-induced vibrations at standstill conditions using a free wake aerodynamic code, Wind Energy, 18, 2145–2169, https://doi.org/10.1002/we.1811, 2015. a
Short summary
As longer wind turbine blades are designed, concern about vortex-induced vibration (VIV) grows. This study identifies a new intermittent vortex-shedding behaviour through a long-time simulation of a 3D wind turbine airfoil. This finding motivates a novel evaluation of airfoil vibrations at different inflow velocities. Our results show that both 2D and 3D simulations predict similar VIV characteristics during large motions, enhancing our understanding and prediction of VIV in turbine blades.
As longer wind turbine blades are designed, concern about vortex-induced vibration (VIV) grows....
Altmetrics
Final-revised paper
Preprint