Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-1775-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-1775-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Near-wake behavior of an asymmetric wind turbine rotor
Pin Chun Yen
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
Fulvio Scarano
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
Related authors
No articles found.
YuanTso Li, Marnix Fijen, Brian Dsouza, Wei Yu, Andrea Sciacchitano, and Carlos Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-156, https://doi.org/10.5194/wes-2025-156, 2025
Preprint under review for WES
Short summary
Short summary
We tested an innovative wind farm concept using novelly engineered wind turbine systems that can guide airflow more efficiently within the farm. Our experiments showed that wind farms deploying this concept can harvest more than twice the wind power per unit area compared to the traditional counterparts. Also, these findings support earlier simulations and point to a more efficient, space-saving future for wind energy.
Abhratej Sahoo, Akshay Koodly Ravishankara, Wei Yu, Daniele Ragni, and Carlos Simao Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-69, https://doi.org/10.5194/wes-2025-69, 2025
Preprint under review for WES
Short summary
Short summary
The paper proposes a new model to include the effects of vortex generators in the fast aerodynamic force calculation methods used for rotor blade sectional load calculations. The model is derived from the effects of vortex generators on turbulent boundary layers. The new model is more accurate than existing models in predicting the parametric impact of various vortex generator geometries on the stall delay and lift increase effects on airfoil aerodynamic polars.
YuanTso Li, Wei Yu, Andrea Sciacchitano, and Carlos Ferreira
Wind Energ. Sci., 10, 631–659, https://doi.org/10.5194/wes-10-631-2025, https://doi.org/10.5194/wes-10-631-2025, 2025
Short summary
Short summary
A novel wind farm concept, called a regenerative wind farm, is investigated numerically. This concept tackles the significant wake interaction losses among traditional wind farms. Our results show that regenerative wind farms can greatly reduce these losses, boosting power output per unit surface. Unlike traditional farms with three-bladed wind turbines, regenerative farms use multi-rotor systems with lifting devices (MRSLs). This unconventional design effectively reduces wake losses.
Nirav Dangi, Koen Boorsma, Edwin Bot, Wim Bierbooms, and Wei Yu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-90, https://doi.org/10.5194/wes-2023-90, 2023
Preprint withdrawn
Short summary
Short summary
The wind turbine wake is a downstream region of velocity deficit, resulting in a power loss for downstream wind turbines. A turbulator is proposed to minimize this velocity deficit. In this work, a very successful field test campaign was executed which demonstrated the use of segmented Gurney Flaps as a promising add-on to promote enhanced wind turbine wake recovery for improved overall wind farm farm performance.
Daan van der Hoek, Joeri Frederik, Ming Huang, Fulvio Scarano, Carlos Simao Ferreira, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 1305–1320, https://doi.org/10.5194/wes-7-1305-2022, https://doi.org/10.5194/wes-7-1305-2022, 2022
Short summary
Short summary
The paper presents a wind tunnel experiment where dynamic induction control was implemented on a small-scale turbine. By periodically changing the pitch angle of the blades, the low-velocity turbine wake is perturbed, and hence it recovers at a faster rate. Small particles were released in the flow and subsequently recorded with a set of high-speed cameras. This allowed us to reconstruct the flow behind the turbine and investigate the effect of dynamic induction control on the wake.
Carlos Ferreira, Wei Yu, Arianna Sala, and Axelle Viré
Wind Energ. Sci., 7, 469–485, https://doi.org/10.5194/wes-7-469-2022, https://doi.org/10.5194/wes-7-469-2022, 2022
Short summary
Short summary
Floating offshore wind turbines may experience large surge motions that, when faster than the local wind speed, cause rotor–wake interaction.
We derive a model which is able to predict the wind speed at the wind turbine, even for large and fast motions and load variations in the wind turbine.
The proposed dynamic inflow model includes an adaptation for highly loaded flow, and it is accurate and simple enough to be easily implemented in most blade element momentum design models.
Cited articles
Abraham, A. and Leweke, T.: Experimental investigation of blade tip vortex behavior in the wake of asymmetric rotors, Exp. Fluids, 64, 109, https://doi.org/10.1007/s00348-023-03646-3, 2023. a, b
Abraham, A., Ramos-García, N., Sørensen, J. N., and Leweke, T.: Numerical investigation of rotor asymmetry to promote wake recovery, J. Phys. Conf. Ser., 2505, 012032, https://doi.org/10.1088/1742-6596/2505/1/012032, 2023b. a, b, c, d
Angelou, N., Mann, J., and Dubreuil-Boisclair, C.: Revealing inflow and wake conditions of a 6 MW floating turbine, Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, 2023. a
Aref, H.: On the equilibrium and stability of a row of point vortices, J. Fluid Mech., 290, 167–181, https://doi.org/10.1017/S002211209500245X, 1995. a
Bachant, P., Goude, A., daa-mec, and Wosnik, M.: turbinesFoam/turbinesFoam: V0.1.1, Zenodo [code], https://doi.org/10.5281/zenodo.3542301, 2019. a
Biswas, N. and Buxton, O. R.: Effect of tip speed ratio on coherent dynamics in the near wake of a model wind turbine, J. Fluid Mech., 979, A34, https://doi.org/10.1017/jfm.2023.1095, 2024a. a
Biswas, N. and Buxton, O. R.: Energy exchanges between coherent modes in the near wake of a wind turbine model at different tip speed ratios, J. Fluid Mech., 996, A8, https://doi.org/10.1017/jfm.2024.581, 2024b. a, b
Branlard, E.: Wind Turbine Aerodynamics and Vorticity-Based Methods: Fundamentals and Recent Applications, Springer International Publishing, https://doi.org/10.1007/978-3-319-55164-7_41, 2017. a
Cerretelli, C. and Williamson, C.: The physical mechanism for vortex merging, J. Fluid Mech., 475, 41–77, https://doi.org/10.1017/S0022112002002847, 2003. a, b, c, d
DHPC: DelftBlue Supercomputer (Phase 1), https://www-tudelft-nl.tudelft.idm.oclc.org/dhpc/ark:/44463/DelftBluePhase1 (last access: 22 May 2025), 2022. a
Ferziger, J. H., Perić, M., and Street, R. L.: Computational Methods for Fluid Dynamics, Springer, 3rd edn., https://doi.org/10.1007/978-3-642-56026-2, 2002. a, b, c, d
Frederik, J. A., Doekemeijer, B. M., Mulders, S. P., and van Wingerden, J.-W.: The helix approach: using dynamic individual pitch control to enhance wake mixing in wind farms, Wind Energy, 23, 1739–1751, https://doi.org/10.1002/we.2513, 2020. a
Gupta, B. P. and Loewy, R. G.: Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices, AIAA J., 12, 1381–1387, https://doi.org/10.2514/3.49493, 1974. a, b
Hansen, K. S., Barthelmie, R. J., Jensen, L. E., and Sommer, A.: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm, Wind Energy, 15, 183–196, https://doi.org/10.1002/we.512, 2012. a
Hodgkin, A., Deskos, G., and Laizet, S.: On the interaction of a wind turbine wake with a conventionally neutral atmospheric boundary layer, Int. J. Heat Fluid Fl., 102, 109165, https://doi.org/10.1016/j.ijheatfluidflow.2023.109165, 2023. a, b
Huang, X., Alavi Moghadam, S. M., Meysonnat, P. S., Meinke, M., and Schröder, W.: Numerical analysis of the effect of flaps on the tip vortex of a wind turbine blade, Int. J. Heat Fluid Fl., 77, 336–351, https://doi.org/10.1016/j.ijheatfluidflow.2019.05.004, 2019. a
Jha, P. K., Churchfield, M. J., Moriarty, P. J., and Schmitz, S.: Guidelines for volume force distributions within actuator line modeling of wind turbines on large-eddy simulation-type grids, J. Sol. Energ.-T. ASME, 136, 031003, https://doi.org/10.1115/1.4026252, 2014. a, b, c, d
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Tech. Rep. NREL/TP-500-38060, 947422, National Renewable Energy Laboratory, https://doi.org/10.2172/947422, 2009. a, b
Leishman, J., Bhagwat, M., and Bagai, A.: Free-vortex filament methods for the analysis of helicopter rotor wakes, J. Aircraft, 39, 759–775, https://doi.org/10.2514/2.3022, 2002. a
Leweke, T., Le Dizès, S., and Williamson, C. H.: Dynamics and instabilities of vortex pairs, Annu. Rev. Fluid Mech., 48, 507–541, https://doi.org/10.1146/annurev-fluid-122414-034558, 2016. a, b
Li, Q., Murata, J., Endo, M., Maeda, T., and Kamada, Y.: Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (Part II: Wake characteristics), Energy, 113, 1304–1315, https://doi.org/10.1016/j.energy.2016.08.018, 2016. a
Li, Y.: Numerical Investigation of Floating Wind Turbine Wake Interactions Using LES-AL Technique, Master's thesis, Delft University of Technology, https://resolver.tudelft.nl/uuid:72f91020-0aaf-41b9-a2b4-20ecfccade24 (last access: 1 May 2025), 2023. a
Li, Y., Yu, W., and Sarlak, H.: Wake interaction of dual surging FOWT rotors in tandem, Renew. Energ., 239, 122062, https://doi.org/10.1016/j.renene.2024.122062, 2025. a
Lignarolo, L., Ragni, D., Krishnaswami, C., Chen, Q., Ferreira, C. S., and Van Bussel, G.: Experimental analysis of the wake of a horizontal-axis wind-turbine model, Renew. Energ., 70, 31–46, https://doi.org/10.1016/j.renene.2014.01.020, 2014. a, b, c
Lignarolo, L. E. M., Ragni, D., Scarano, F., Ferreira, C. J. S., and van Bussel, G. J. W.: Tip-vortex instability and turbulent mixing in wind-turbine wakes, J. Fluid Mech., 781, 467–493, https://doi.org/10.1017/jfm.2015.470, 2015. a, b, c, d
Lilly, D. K.: The representation of small-scale turbulence in numerical simulation experiments, in: Proc. IBM sci. comput. symp. on environmental science, November 1966, Boulder, Colorado, 195–210, https://doi.org/10.5065/D62R3PMM, 1967. a
Martínez-Tossas, L. A. and Meneveau, C.: Filtered lifting line theory and application to the actuator line model, J. Fluid Mech., 863, 269–292, https://doi.org/10.1017/jfm.2018.994, 2019. a
Martínez-Tossas, L., Churchfield, M., and Leonardi, S.: Large eddy simulations of the flow past wind turbines: actuator line and disk modeling, Wind Energy, 18, 1047–1060, https://doi.org/10.1002/we.1747, 2015. a, b
Odemark, Y. and Fransson, J. H. M.: The stability and development of tip and root vortices behind a model wind turbine, Exp. Fluids, 54, 1591, https://doi.org/10.1007/s00348-013-1591-6, 2013. a
OpenCFD Ltd.: OpenFOAM: User Guide v2312, https://develop.openfoam.com/Development/openfoam/-/tree/OpenFOAM-v2312 (last access: May 2025), 2023. a
Poletto, R., Craft, T., and Revell, A.: A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for LES, Flow Turbul. Combust., 91, 519–539, https://doi.org/10.1007/s10494-013-9488-2, 2013. a
Porté-Agel, F., Wu, Y.-T., Lu, H., and Conzemius, R. J.: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms, J. Wind Eng. Ind. Aerod., 99, 154–168, https://doi.org/10.1016/j.jweia.2011.01.011, 2011. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-turbine and wind-farm flows: a review, Bound.-Lay. Meteorol., 174, 1–59, https://doi.org/10.1007/s10546-019-00473-0, 2020. a
Raffel, M., Kähler, C., Willert, C., Wereley, S., Scarano, F., and Kompenhans, J.: Particle Image Velocimetry: A Practical Guide, Springer, 3rd edn., https://doi.org/10.1007/978-3-319-68852-7, 2018. a
Sarlak, H.: Large eddy simulation of turbulent flows in wind energy, PhD thesis, Technical University of Denmark, https://findit.dtu.dk/en/catalog/546f6f9b7723b2dd6e000099 (last access: 7 August 2025), 2014. a
Sarlak, H., Meneveau, C., and Sørensen, J. N.: Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions, Renew. Energ., 77, 386–399, https://doi.org/10.1016/j.renene.2014.12.036, 2015. a
Sarlak, H., Nishino, T., Martínez-Tossas, L., Meneveau, C., and Sørensen, J.: Assessment of blockage effects on the wake characteristics and power of wind turbines, Renew. Energ., 93, 340–352, https://doi.org/10.1016/j.renene.2016.01.101, 2016. a, b
Sarmast, S., Dadfar, R., Mikkelsen, R. F., Schlatter, P., Ivanell, S., Sørensen, J. N., and Henningson, D. S.: Mutual inductance instability of the tip vortices behind a wind turbine, J. Fluid Mech., 755, 705–731, https://doi.org/10.1017/jfm.2014.326, 2014. a
Shen, W. Z., Mikkelsen, R., Sørensen, J. N., and Bak, C.: Tip loss corrections for wind turbine computations, Wind Energy, 8, 457–475, https://doi.org/10.1002/we.153, 2005. a
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiement, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Sørensen, J. N. and Shen, W. Z.: Numerical modeling of wind turbine wakes, J. Fluid. Eng.-T. ASME, 124, 393–399, https://doi.org/10.1115/1.1471361, 2002. a, b
Sørensen, J. N., Dag, K. O., and Ramos-García, N.: A refined tip correction based on decambering, Wind Energy, 19, 787–802, https://doi.org/10.1002/we.1865, 2016. a
Talavera, M. and Shu, a.: Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel, Renew. Energ., 109, 363–371, https://doi.org/10.1016/j.renene.2017.03.034, 2017. a
Troldborg, N., Larsen, G. C., Madsen, H. A., Hansen, K. S., Sørensen, J. N., and Mikkelsen, R.: Numerical simulations of wake interaction between two wind turbines at various inflow conditions, Wind Energy, 14, 859–876, https://doi.org/10.1002/we.433, 2011. a
van der Hoek, D., den Abbeele, B. V., Simao Ferreira, C., and van Wingerden, J.-W.: Maximizing wind farm power output with the helix approach: experimental validation and wake analysis using tomographic particle image velocimetry, Wind Energy, 27, 463–482, https://doi.org/10.1002/we.2896, 2024. a
van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D., Tavner, P., Bottasso, C. L., Muskulus, M., Matha, D., Lindeboom, H. J., Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein, M., Sørensen, P. E., Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy, Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, 2016. a
Wang, L., Liu, X., Wang, N., and Li, M.: Propeller wake instabilities under turbulent-inflow conditions, Phys. Fluids, 34, 085108, https://doi.org/10.1063/5.0101977, 2022. a
Widnall, S. E.: The stability of a helical vortex filament, J. Fluid Mech., 54, 641–663, https://doi.org/10.1017/S0022112072000928, 1972. a
Short summary
This study explores how changing wind turbine blade length affects the aerodynamics behind the turbine. Using high-fidelity simulations, we found that varying blade lengths accelerates the leapfrogging event but does not improve wake recovery directly. In contrast, turbulence plays a bigger role, as the wake breakdown process is more influenced by it over the studied rotor asymmetries. These findings provide insights for designing more efficient wind turbine rotors.
This study explores how changing wind turbine blade length affects the aerodynamics behind the...
Altmetrics
Final-revised paper
Preprint