Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-1869-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-1869-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the enhanced sampling rate for turbulence measurement with a wind lidar profiler
Maxime Thiébaut
CORRESPONDING AUTHOR
France Énergies Marines, Technopôle Brest-Iroise, 525 Avenue Alexis de Rochon, 29280 Plouzané, France
Louis Marié
Laboratoire d'Océanographie Physique et Spatiale, Université de Brest, CNRS, IFREMER, IRD, Plouzané, France
Frédéric Delbos
Vaisala France SAS, 6A rue René Razel, Tech Park, CS 70001, 91400 Saclay, France
Florent Guinot
France Énergies Marines, Technopôle Brest-Iroise, 525 Avenue Alexis de Rochon, 29280 Plouzané, France
Related authors
Nicolas Thebault, Maxime Thiébaut, Marc Le Boulluec, Guillaume Damblans, Christophe Maisondieu, Cristina Benzo, and Florent Guinot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-126, https://doi.org/10.5194/wes-2023-126, 2023
Preprint withdrawn
Short summary
Short summary
This study examines motion's impact on LOS turbulent velocity fluctuations measured by lidar profilers. Onshore tests used a mobile lidar (WindCube v2.1) on a hexapod, comparing it to a fixed lidar. RMSE was calculated to assess motion effects on turbulence. Results showed alignment, wind speed and amplitude as significant influences on RMSE. Motion frequency affected LOS velocity spectra but had limited impact on RMSE compared to other factors.
Robin Marcille, Maxime Thiébaut, Pierre Tandeo, and Jean-François Filipot
Wind Energ. Sci., 8, 771–786, https://doi.org/10.5194/wes-8-771-2023, https://doi.org/10.5194/wes-8-771-2023, 2023
Short summary
Short summary
A novel data-driven method is proposed to design an optimal sensor network for the reconstruction of offshore wind resources. Based on unsupervised learning of numerical weather prediction wind data, it provides a simple yet efficient method for the siting of sensors, outperforming state-of-the-art methods for this application. It is applied in the main French offshore wind energy development areas to provide guidelines for the deployment of floating lidars for wind resource assessment.
Maxime Thiébaut, Marie Cathelain, Salma Yahiaoui, and Ahmed Esmail
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-53, https://doi.org/10.5194/wes-2022-53, 2022
Revised manuscript not accepted
Short summary
Short summary
The characterization of the turbulence intensity (TI) from profiling lidars measurements is still an active area of research. In this paper, a new method is proposed to derive TI from a WindCube v2.1 lidar. The new method allows for a reduction of TI estimation by a factor of more than 3 in comparison to a method commonly used in the wind energy industry. Moreover, a new configuration of WindCube v2.1 with a sampling rate four times higher than that of the commercial lidar is presented.
David L. McCann, Adrien C. H. Martin, Karlus A. C. de Macedo, Ruben Carrasco Alvarez, Jochen Horstmann, Louis Marié, José Márquez-Martínez, Marcos Portabella, Adriano Meta, Christine Gommenginger, Petronilo Martin-Iglesias, and Tania Casal
Ocean Sci., 20, 1109–1122, https://doi.org/10.5194/os-20-1109-2024, https://doi.org/10.5194/os-20-1109-2024, 2024
Short summary
Short summary
This paper presents the results of the first scientific campaign of a new method to remotely sense the small-scale, fast-evolving dynamics that are vital to our understanding of coastal and shelf sea processes. This work represents the first demonstration of the simultaneous measurement of current and wind vectors from this novel method. Comparisons with other current measuring systems and models around the dynamic area of the Iroise Sea are presented and show excellent agreement.
Nicolas Thebault, Maxime Thiébaut, Marc Le Boulluec, Guillaume Damblans, Christophe Maisondieu, Cristina Benzo, and Florent Guinot
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-126, https://doi.org/10.5194/wes-2023-126, 2023
Preprint withdrawn
Short summary
Short summary
This study examines motion's impact on LOS turbulent velocity fluctuations measured by lidar profilers. Onshore tests used a mobile lidar (WindCube v2.1) on a hexapod, comparing it to a fixed lidar. RMSE was calculated to assess motion effects on turbulence. Results showed alignment, wind speed and amplitude as significant influences on RMSE. Motion frequency affected LOS velocity spectra but had limited impact on RMSE compared to other factors.
Robin Marcille, Maxime Thiébaut, Pierre Tandeo, and Jean-François Filipot
Wind Energ. Sci., 8, 771–786, https://doi.org/10.5194/wes-8-771-2023, https://doi.org/10.5194/wes-8-771-2023, 2023
Short summary
Short summary
A novel data-driven method is proposed to design an optimal sensor network for the reconstruction of offshore wind resources. Based on unsupervised learning of numerical weather prediction wind data, it provides a simple yet efficient method for the siting of sensors, outperforming state-of-the-art methods for this application. It is applied in the main French offshore wind energy development areas to provide guidelines for the deployment of floating lidars for wind resource assessment.
Maxime Thiébaut, Marie Cathelain, Salma Yahiaoui, and Ahmed Esmail
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-53, https://doi.org/10.5194/wes-2022-53, 2022
Revised manuscript not accepted
Short summary
Short summary
The characterization of the turbulence intensity (TI) from profiling lidars measurements is still an active area of research. In this paper, a new method is proposed to derive TI from a WindCube v2.1 lidar. The new method allows for a reduction of TI estimation by a factor of more than 3 in comparison to a method commonly used in the wind energy industry. Moreover, a new configuration of WindCube v2.1 with a sampling rate four times higher than that of the commercial lidar is presented.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Louis Marié, Fabrice Collard, Frédéric Nouguier, Lucia Pineau-Guillou, Danièle Hauser, François Boy, Stéphane Méric, Peter Sutherland, Charles Peureux, Goulven Monnier, Bertrand Chapron, Adrien Martin, Pierre Dubois, Craig Donlon, Tania Casal, and Fabrice Ardhuin
Ocean Sci., 16, 1399–1429, https://doi.org/10.5194/os-16-1399-2020, https://doi.org/10.5194/os-16-1399-2020, 2020
Short summary
Short summary
With present-day techniques, ocean surface currents are poorly known near the Equator and globally for spatial scales under 200 km and timescales under 30 d. Wide-swath radar Doppler measurements are an alternative technique. Such direct surface current measurements are, however, affected by platform motions and waves. These contributions are analyzed in data collected during the DRIFT4SKIM airborne and in situ experiment, demonstrating the possibility of measuring currents from space globally.
Cited articles
Bodini, N., Lundquist, J. K., and Newsom, R. K.: Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign, Atmos. Meas. Tech., 11, 4291–4308, https://doi.org/10.5194/amt-11-4291-2018, 2018. a, b
Bodini, N., Lundquist, J. K., Krishnamurthy, R., Pekour, M., Berg, L. K., and Choukulkar, A.: Spatial and temporal variability of turbulence dissipation rate in complex terrain, Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019, 2019. a
Browning, K. A. and Wexler, R.: The determination of kinematic properties of a wind field using Doppler radar, J. Appl. Meteorol. Clim., 7, 105–113, https://doi.org/10.1175/1520-0450(1968)007<0105:tdokpo>2.0.co;2, 1968. a, b
Brugger, P., Träumner, K., and Jung, C.: Evaluation of a procedure to correct spatial averaging in turbulence statistics from a Doppler lidar by comparing time series with an ultrasonic anemometer, J. Atmos. Ocean. Tech., 33, 2135–2144, https://doi.org/10.1175/jtech-d-15-0136.1, 2016. a
Dimitrov, N., Natarajan, A., and Mann, J.: Effects of normal and extreme turbulence spectral parameters on wind turbine loads, Renew. Energy, 101, 1180–1193, https://doi.org/10.1016/j.renene.2016.10.001, 2017. a
Doviak, R. J. and Zrnic, D. S.: Doppler Radar & Weather Observations, Courier Corporation, https://doi.org/10.1016/c2009-0-22358-0, 1993. a
Durgesh, V., Thomson, J., Richmond, M. C., and Polagye, B. L.: Noise correction of turbulent spectra obtained from acoustic doppler velocimeters, Flow Meas. Instrum., 37, 29–41, https://doi.org/10.1016/j.flowmeasinst.2014.03.001, 2014. a, b
Eberhard, W. L., Cupp, R. E., and Healy, K. R.: Doppler lidar measurement of profiles of turbulence and momentum flux, J. Atmos. Ocean. Tech., 6, 809–819, https://doi.org/10.1175/1520-0426(1989)006<0809:dlmopo>2.0.co;2, 1989. a
Frandsen, S. T.: Turbulence and turbulence-generated fatigue loading in wind turbine clusters, PhD dissertation, Wind Energy Dept., Tech. Univ. Denmark, Kgs. Lyngby, Denmark, https://backend.orbit.dtu.dk/ws/portalfiles/portal/12674798/ris_r_1188.pdf (last access: 28 August 2025), 2007. a
Frehlich, R.: Coherent Doppler lidar signal covariance including wind shear and wind turbulence, Appl. Optics, 33, 6472–6481, https://doi.org/10.1364/ao.33.006472, 1994. a
Frehlich, R., Hannon, S. M., and Henderson, S. W.: Performance of a 2-µm coherent Doppler lidar for wind measurements, J. Atmos. Ocean. Tech., 11, 1517–1528, https://doi.org/10.1175/1520-0426(1994)011<1517:poacdl>2.0.co;2, 1994. a
Gal-Chen, T., Xu, M., and Eberhard, W. L.: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data, J. Geophys. Res.-Atmos., 97, 18409–18423, https://doi.org/10.1029/91jd03174, 1992. a
Gargett, A. E., Tejada-Martinez, A. E., and Grosch, C. E.: Measuring turbulent large-eddy structures with an ADCP. Part 2. Horizontal velocity variance, J. Mar. Res., 67, 569–595, https://elischolar.library.yale.edu/journal_of_marine_research/243 (last access: 28 August 2025), 2009. a
Gottschall, J., Courtney, M. S., Wagner, R., Jørgensen, H. E., and Antoniou, I.: Lidar profilers in the context of wind energy – a verification procedure for traceable measurements, Wind Energy, 15, 147–159, https://doi.org/10.1002/we.518, 2012. a
Guerra, M. and Thomson, J.: Turbulence Measurements from Five-Beam Acoustic Doppler Current Profilers, J. Atmos. Ocean. Tech., 34, 1267–1284, https://doi.org/10.1175/jtech-d-16-0148.1, 2017. a, b
Hayat, M. J.: Understanding statistical significance, Nurs. Res., 59, 219–223, https://doi.org/10.1097/nnr.0b013e3181dbb2cc, 2010. a
Kelberlau, F. and Mann, J.: Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar, Wind Energ. Sci., 5, 519–541, https://doi.org/10.5194/wes-5-519-2020, 2020. a
Kristensen, L., Kirkegaard, P., and Mikkelsen, T.: Determining the velocity fine structure by a laser anemometer with fixed orientation, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, https://backend.orbit.dtu.dk/ws/portalfiles/portal/5712483/ris-r-1762.pdf (last access: 28 August 2025), 2011. a
Kropfli, R. A.: Single Doppler radar measurements of turbulence profiles in the convective boundary layer, J. Atmos. Ocean. Tech., 3, 305–314, https://doi.org/10.1175/1520-0426(1986)003<0305:sdrmot>2.0.co;2, 1986. a
Lenschow, D. H., Mann, J., and Kristensen, L.: How long is long enough when measuring fluxes and other turbulence statistics?, J. Atmos. Ocean. Tech., 11, 661–673, https://doi.org/10.1175/1520-0426(1994)011<0661:hlilew>2.0.co;2, 1994. a
Lenschow, D. H., Wulfmeyer, V., and Senff, C.: Measuring second-through fourth-order moments in noisy data, J. Atmos. Ocean. Tech., 17, 1330–1347, https://doi.org/10.1175/1520-0426(2000)017<1330:mstfom>2.0.co;2, 2000. a, b
Lhermitte, R. M.: Note on wind variability with Doppler radar, J. Atmos. Sci., 19, 343–346, https://doi.org/10.1175/1520-0469(1962)019<0343:nowvwd>2.0.co;2, 1962. a
Lhermitte, R. M.: Note on the observation of small-scale atmospheric turbulence by Doppler radar techniques, Radio Sci., 4, 1241–1246, https://doi.org/10.1029/rs004i012p01241, 1969. a
Lu, Y. and Lueck, R. G.: Using a broadband ADCP in a tidal channel. Part II: Turbulence, J. Atmos. Ocean. Tech., 16, 1568–1579, https://doi.org/10.1175/1520-0426(1999)016<1568:uabaia>2.0.co;2, 1999. a
Mann, J., Cariou, J.-P., Courtney, M. S., Parmentier, R., Mikkelsen, T., Wagner, R., Lindelow, P., Sjoholm, M., and Enevoldsen, K.: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer, Meteorol. Z., 18, 135, https://doi.org/10.1127/0941-2948/2009/0370, 2009. a, b
McMillan, J. M. and Hay, A. E.: Spectral and structure function estimates of turbulence dissipation rates in a high-flow tidal channel using broadband ADCPs, J. Atmos. Ocean. Tech., 34, 5–20, https://doi.org/10.1175/jtech-d-16-0131.1, 2017. a, b
Mücke, T., Kleinhans, D., and Peinke, J.: Atmospheric turbulence and its influence on the alternating loads on wind turbines, Wind Energy, 14, 301–316, https://doi.org/10.1002/we.422, 2011. a
Newman, J. F., Klein, P. M., Wharton, S., Sathe, A., Bonin, T. A., Chilson, P. B., and Muschinski, A.: Evaluation of three lidar scanning strategies for turbulence measurements, Atmos. Meas. Tech., 9, 1993–2013, https://doi.org/10.5194/amt-9-1993-2016, 2016. a
O'Connor, E. J., Illingworth, A. J., Brooks, I. M., Westbrook, C. D., Hogan, R. J., Davies, F., and Brooks, B. J.: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements, J. Atmos. Ocean. Tech. 27, 1652–1664, https://doi.org/10.1175/2010jtecha1455.1, 2010. a
Olesen, H. R., Larsen, S. E., and Højstrup, J.: Modelling velocity spectra in the lower part of the planetary boundary layer, Bound.-Lay. Meteorol., 29, 285–312, https://doi.org/10.1007/bf00119794, 1984. a
Pearson, G., Davies, F., and Collier, C.: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer, J. Atmos. Ocean. Tech., 26, 240–250, https://doi.org/10.1175/2008jtecha1128.1, 2009. a, b
Peña, A., Hasager, C. B., Gryning, S., Courtney, M., Antoniou, I., and Mikkelsen, T.: Offshore wind profiling using light detection and ranging measurements, Wind Energy, 12, 105–124, https://doi.org/10.1002/we.283, 2009. a
Richard, J.-B., Thomson, J., Polagye, B., and Bard, J.: Method for identification of doppler noise levels in turbulent flow measurements dedicated to tidal energy, Int. J. Mar. Energ., 3, 52–64, https://doi.org/10.1016/j.ijome.2013.11.005, 2013. a
Rippeth, T. P., Williams, E., and Simpson, J. H.: Reynolds stress and turbulent energy production in a tidal channel, J. Phys. Oceanogr., 32, 1242–1251, https://doi.org/10.1175/1520-0485(2002)032<1242:rsatep>2.0.co;2, 2002. a
Sjöholm, M., Mikkelsen, T., Mann, J., Enevoldsen, K., and Courtney, M.: Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar, Meteorol. Z., 18, https://doi.org/10.1127/0941-2948/2009/0379, 2009. a
Smalikho, I., Köpp, F., and Rahm, S.: Measurement of atmospheric turbulence by 2-µm Doppler lidar, J. Atmos. Ocean. Tech., 22, 1733–1747, https://doi.org/10.1175/jtech1815.1, 2005. a
Stacey, M. T., Monismith, S. G., and Burau, J. R.: Measurements of Reynolds stress profiles in unstratified tidal flow, J. Geophys. Res., 104, 10935–10949, https://doi.org/10.1029/1998jc900095, 1999a. a
Stacey, M. T., Monismith, S. G., and Burau, J. R.: Observations of turbulence in a partially stratified estuary, J. Phys. Oceanogr., 29, 1950–1970, https://doi.org/10.1175/1520-0485(1999)029<1950:ootiap>2.0.co;2, 1999b. a
Strauch, R. G., Merritt, D. A., Moran, K. P., Earnshaw, K. B., and De Kamp, D. V.: The Colorado wind-profiling network, J. Atmos. Ocean. Tech., 1, 37–49, https://doi.org/10.1175/1520-0426(1984)001<0037:tcwpn>2.0.co;2, 1984. a
Stull, R. B.: Meteorology for scientists and engineers: a technical companion book with Ahrens' Meteorology Today, Brooks/Cole, ISBN: 0-534-37214-7, 2000. a
Teunissen, H. W.: Structure of mean winds and turbulence in the planetary boundary layer over rural terrain, Bound.-Lay. Meteorol., 19, 187–221, https://doi.org/10.1007/bf00117220, 1980. a
Theriault, K.: Incoherent multibeam Doppler current profiler performance: Part II – Spatial response, IEEE J. Ocean. Eng., 11, 16–25, https://doi.org/10.1109/joe.1986.1145135, 1986. a
Thiébaut, M., Filipot, J.-F., Maisondieu, C., Damblans, G., Duarte, R., Droniou, E., Chaplain, N., and Guillou, S.: A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves, Energy, 191, 116550, https://doi.org/10.1016/j.energy.2019.116550, 2020. a
Thiébaut, M., Quillien, N., Maison, A., Gaborieau, H., Ruiz, N., MacKenzie, S., Connor, G., and Filipot, J.-F.: Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary, Renew. Energy, 195, 252–262, https://doi.org/10.1016/j.renene.2022.06.020, 2022. a
Thiébaut, M., Vonta, L., Benzo, C., and Guinot, F.: Characterization of the offshore wind dynamics for wind energy production in the Gulf of Lion, Western Mediterranean Sea, Wind Energ. Eng. Res., 1, 100002, https://doi.org/10.1016/j.weer.2024.100002, 2024. a
Thomson, J., Polagye, B., Durgesh, V., and Richmond, M. C.: Measurements of turbulence at two tidal energy sites in Puget Sound, WA, Oceanic Engineering, IEEE J. Ocean. Eng., 37, 363–374, https://doi.org/10.1109/joe.2012.2191656, 2012. a
Tieleman, H. W.: Universality of velocity spectra, J. Wind Eng. Indust. Aerodynam., 56, 55–69, https://doi.org/10.1016/0167-6105(94)00011-2, 1995. a
Welch, P.: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE T. Audio Electroacoust., 15, 70–73, https://doi.org/10.1109/tau.1967.1161901, 1967. a
Wildmann, N., Bodini, N., Lundquist, J. K., Bariteau, L., and Wagner, J.: Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign, Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019, 2019. a
Wilson, D. A.: Doppler radar studies of boundary layer wind profile and turbulence in snow conditions, in: Proceedings of the Radar Meterology Conference (14th), Tucson, Arizona, 17–20 November 1970, 191–196, https://books.google.fr/books?hl=fr&lr=&id=hTJRAAAAMAAJ&oi=fnd&pg=PA281&dq=Doppler+Radar+Studies+of+Boundary+Layer+Wind+Profile+and+Turbulence+in+Snow+Conditions.&ots=E5kLpKW9gE&sig=bWHZCjer7bLyEKCONayhSv5M40A&redir_esc=y#v=onepage&q=Doppler%20Radar%20Studies%20of%20Boundary%20Layer%20Wind%20Profile%20and%20Turbulence%20in%20Snow%20Conditions.&f=false (last access: 28 August 2025), 1970. a
Yang, Q., Li, H., Li, T., and Zhou, X.: Wind farm layout optimization for levelized cost of energy minimization with combined analytical wake model and hybrid optimization strategy, Energ. Convers. Manage., 248, 114778, https://doi.org/10.1016/j.enconman.2021.114778, 2021. a
Short summary
This study evaluates the impact of an enhanced sampling rate on turbulence measurements using the Vaisala WindCube v2.1 lidar profiler. A prototype configuration, sampling 4 times faster than the commercial setup, is compared to the commercial configuration, with reference measurements provided by a 2D sonic anemometer. The prototype lidar captures greater variance, resulting in turbulence estimates that are more closely aligned with the reference.
This study evaluates the impact of an enhanced sampling rate on turbulence measurements using...
Altmetrics
Final-revised paper
Preprint