Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-1979-2025
https://doi.org/10.5194/wes-10-1979-2025
Research article
 | 
12 Sep 2025
Research article |  | 12 Sep 2025

Multi-task learning long short-term memory model to emulate wind turbine blade dynamics

Shubham Baisthakur and Breiffni Fitzgerald

Model code and software

Multi-task Learning Long Short-term Memory Model to Emulate Wind Turbine Blade Dynamics. In Wind Energy Science Shubham Baisthakur https://doi.org/10.5281/zenodo.13305715

Download
Short summary
Site-specific performance analysis of wind turbines is crucial but computationally prohibitive due to the high cost of evaluating numerical models. To address this, the authors propose a machine learning model combined with dimensionality reduction using principal component analysis and the discrete cosine transform, along with a long short-term memory model, to predict dynamic responses at a fraction of the computational cost.
Share
Altmetrics
Final-revised paper
Preprint