Baisthakur, S. and Fitzgerald, B.: Physics-Informed Neural Network surrogate model for bypassing Blade Element Momentum theory in wind turbine aerodynamic load estimation, Renew. Energ., 120122,
https://doi.org/10.1016/j.renene.2024.120122, 2024.
a
Baisthakur, S. and Fitzgerald, B.: Predicting Wind Turbine Blade Tip Deformation With Long Short-Term Memory (LSTM) Models, Wind Energy, 28, e70027,
https://doi.org/10.1002/we.70027, 2025.
a
Banik, A., Behera, C., Sarathkumar, T. V., and Goswami, A. K.: Uncertain wind power forecasting using LSTM-based prediction interval, IET Renewable Power Generation, 14, 2657–2667, 2020. a
Bashirzadeh Tabrizi, A., Wu, B., Whale, J., and Shahabi Lotfabadi, M.: Using TurbSim stochastic simulator to improve accuracy of computational modelling of wind in the built environment, Wind Eng., 43, 147–161, 2019. a
Brunton, S. L. and Kutz, J. N.: Data-driven science and engineering: Machine learning, dynamical systems, and control, Cambridge University Press,
https://doi.org/10.1017/9781108380690, 2022.
a,
b
Calazone, O.: An Intuitive Explanation of LSTM,
https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c (last access: 20 February 2024), 2022.
a,
b
Chen, H., Liu, H., Chu, X., Liu, Q., and Xue, D.: Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network, Renew. Energ., 172, 829–840, 2021. a
Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K.: Neural ordinary differential equations, Adv. Neur. In., 31,
https://dl.acm.org/doi/10.5555/3295222.3295349, 2018. a
Choe, D.-E., Kim, H.-C., and Kim, M.-H.: Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades, Renew. Energ., 174, 218–235, 2021. a
de N Santos, F., D’Antuono, P., Robbelein, K., Noppe, N., Weijtjens, W., and Devriendt, C.: Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks, Renew. Energ., 205, 461–474, 2023. a
Dimitrov, N. and Göçmen, T.: Virtual sensors for wind turbines with machine learning-based time series models, Wind Energy, 25, 1626–1645,
https://doi.org/10.1002/we.2762, 2022.
a
Dimitrov, N., Kelly, M. C., Vignaroli, A., and Berg, J.: From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases, Wind Energ. Sci., 3, 767–790,
https://doi.org/10.5194/wes-3-767-2018, 2018.
a,
b
Fitzgerald, B., McAuliffe, J., Baisthakur, S., and Sarkar, S.: Enhancing the reliability of floating offshore wind turbine towers subjected to misaligned wind-wave loading using tuned mass damper inerters (TMDIs), Renew. Energ., 211, 522–538,
https://doi.org/10.1016/j.renene.2023.04.097, 2023.
a,
b
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., Abbas, N. J., Meng, F., Bortolotti, P., and Skrzypinski, W.: IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine, Tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020.
a,
b
Garcke, J., Iza-Teran, R., Marks, M., Pathare, M., Schollbach, D., and Stettner, M.: Dimensionality reduction for the analysis of time series data from wind turbines, Scientific Computing and Algorithms in Industrial Simulations: Projects and Products of Fraunhofer SCAI, pp. 317–339,
https://doi.org/10.1007/978-3-319-62458-7_16, 2017.
a
Geng, D., Zhang, H., and Wu, H.: Short-term wind speed prediction based on principal component analysis and LSTM, Appl. Sci., 10, 4416,
https://doi.org/10.3390/app10134416, 2020.
a
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.: Gene selection for cancer classification using support vector machines, Mach. Learn., 46, 389–422,
https://doi.org/10.1023/A:1012487302797, 2002.
a
Haghi, R. and Crawford, C.: Surrogate models for the blade element momentum aerodynamic model using non-intrusive polynomial chaos expansions, Wind Energ. Sci., 7, 1289–1304,
https://doi.org/10.5194/wes-7-1289-2022, 2022.
a
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H.: The elements of statistical learning: data mining, inference, and prediction, vol. 2, Springer,
https://doi.org/10.1007/978-0-387-84858-7, 2009.
a
Hu, Y., Huber, A., Anumula, J., and Liu, S.-C.: Overcoming the vanishing gradient problem in plain recurrent networks, arXiv [preprint] arXiv:1801.06105,
https://doi.org/10.48550/arXiv.1801.06105, 2018.
a
Hübler, C., Gebhardt, C. G., and Rolfes, R.: Methodologies for fatigue assessment of offshore wind turbines considering scattering environmental conditions and the uncertainty due to finite sampling, Wind Energy, 21, 1092–1105, 2018. a
Jolliffe, I. T. and Cadima, J.: Principal component analysis: a review and recent developments, Philosophical transactions of the royal society A: Mathematical, Phys. Eng. Sci., 374, 20150202,
https://doi.org/10.1098/rsta.2015.0202, 2016.
a
Jonkman, B., Mudafort, R. M., Platt, A., Branlard, E., Sprague, M., Jonkman, J., Hayman, G., Vijayakumar, G., Buhl, M., Ross, H., Bortolotti, P., Masciola, M., Ananthan, S., Schmidt, M. J., Rood, J., Mendoza, N., Hai, S. L., Hall, M., Sharma, A., Shaler, K., Bendl, K., Schuenemann, P., Sakievich, P., Quon, E. W., Phillips, M. R., Kusouno, N., Gonzalez Salcedo, A., Martinez, T., and Corniglion, R.: OpenFAST/openfast: OpenFAST v3.1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.6324288, 2022.
a
Jonkman, B. J.: TurbSim user's guide: Version 1.50, Tech. rep., National Renewable Energy Lab. (NREL), Golden, CO (United States), 2009.
a,
b
Jonkman, J. M.: Modeling of the UAE Wind Turbine for Refinement of FAST AD, Tech. rep., National Renew. Energ. Lab.(NREL), Golden, CO (United States), 2003. a
Lataniotis, C.: Data-driven uncertainty quantification for high-dimensional engineering problems, Ph.D. thesis, ETH Zurich, 2019.
a,
b
Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y.: Independently recurrent neural network (indrnn): Building a longer and deeper rnn, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5457–5466, 2018. a
Njiri, J. G. and Söffker, D.: State-of-the-art in wind turbine control: Trends and challenges, Renew. Sustain. Energ. Rev., 60, 377–393, 2016. a
Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559–572,
https://doi.org/10.1080/14786440109462720, 1901.
a
Pereira, T. P., Ekwaro-Osire, S., Dias, J. P., Ward, N. J., and Cunha Jr., A.: Uncertainty quantification of wind turbine wakes under random wind conditions, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, vol. 83501, V013T13A022, 2019. a
Roga, S., Bardhan, S., Kumar, Y., and Dubey, S. K.: Recent technology and challenges of wind energy generation: A review, Sustain. Energ. Technolo. Assess., 52, 102239,
https://doi.org/10.1016/j.seta.2022.102239, 2022.
a
Sarkar, S. and Fitzgerald, B.: Vibration control of spar-type floating offshore wind turbine towers using a tuned mass-damper-inerter, Struct. Control Hlth., 27, e2471,
https://doi.org/10.1002/stc.2471, 2020.
a,
b
Sarkar, S. and Fitzgerald, B.: Use of kane’s method for multi-body dynamic modelling and control of spar-type floating offshore wind turbines, Energies, 14, 6635,
https://doi.org/10.3390/en14206635, 2021.
a
Sarkar, S., Chen, L., Fitzgerald, B., and Basu, B.: Multi-resolution wavelet pitch controller for spar-type floating offshore wind turbines including wave-current interactions, J. Sound Vibration, 470, 115170,
https://doi.org/10.1016/j.jsv.2020.115170, 2020a.
a
Sarkar, S., Fitzgerald, B., and Basu, B.: Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation, IEEE T. Contr. Syst. T., 29, 305–315,
https://doi.org/10.1109/TCST.2020.2975148, 2020b.
a,
b
Schär, S., Marelli, S., and Sudret, B.: Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX), Mech. Syst. Signal Pr., 208, 110956,
https://doi.org/10.1016/j.ymssp.2023.110956, 2024.
a,
b,
c
Shi, W., Hu, L., Lin, Z., Zhang, L., Wu, J., and Chai, W.: Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network, Ocean Eng., 280, 114558,
https://doi.org/10.1016/j.oceaneng.2023.114558, 2023.
a
Tan, J. D., Chang, C. C. W., Bhuiyan, M. A. S., Nisa’Minhad, K., and Ali, K.: Advancements of wind energy conversion systems for low-wind urban environments: A review, Energy Reports, 8, 3406–3414, 2022. a
Van Der Maaten, L., Postma, E. O., van den Herik, H. J., and Jaap, H.: Dimensionality reduction: A comparative review, J. Mach. Learn. Res., 10, 13,
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=6GDfcqEAAAAJ&citation_for_view=6GDfcqEAAAAJ:u5HHmVD_uO8C (last access: 29 August 2025), 2009.
a,
b
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.: Attention is all you need, Advances in neural information processing systems, 30,
https://dl.acm.org/doi/10.5555/3295222.3295349, 2017. a
Wang, Y., Ma, X., and Joyce, M. J.: Reducing sensor complexity for monitoring wind turbine performance using principal component analysis, Renew. Energ., 97, 444–456, 2016. a
Woo, S., Park, J., and Park, J.: Predicting wind turbine power and load outputs by multi-task convolutional LSTM model, in: 2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1–5, IEEE, 2018.
a,
b
Xiang, L., Wang, P., Yang, X., Hu, A., and Su, H.: Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism, Measurement, 175, 109094,
https://doi.org/10.1016/j.measurement.2021.109094, 2021.
a
Yu, R., Gao, J., Yu, M., Lu, W., Xu, T., Zhao, M., Zhang, J., Zhang, R., and Zhang, Z.: LSTM-EFG for wind power forecasting based on sequential correlation features, Future Gener. Comp. Sy., 93, 33–42, 2019. a
Zhang, K., Tang, B., Deng, L., and Yu, X.: Fault detection of wind turbines by subspace reconstruction-based robust kernel principal component analysis, IEEE T. Instrum. Meas., 70, 1–11, 2021. a
Zhu, D., Huang, X., Ding, Z., and Zhang, W.: Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties, Reliability Eng. Syst. Safe., 241, 109616,
https://doi.org/10.1016/j.ress.2023.109616, 2024.
a