Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-1979-2025
https://doi.org/10.5194/wes-10-1979-2025
Research article
 | 
12 Sep 2025
Research article |  | 12 Sep 2025

Multi-task learning long short-term memory model to emulate wind turbine blade dynamics

Shubham Baisthakur and Breiffni Fitzgerald

Viewed

Total article views: 1,448 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
978 216 254 1,448 68 101
  • HTML: 978
  • PDF: 216
  • XML: 254
  • Total: 1,448
  • BibTeX: 68
  • EndNote: 101
Views and downloads (calculated since 14 Oct 2024)
Cumulative views and downloads (calculated since 14 Oct 2024)

Viewed (geographical distribution)

Total article views: 1,448 (including HTML, PDF, and XML) Thereof 1,440 with geography defined and 8 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 06 Dec 2025
Download
Short summary
Site-specific performance analysis of wind turbines is crucial but computationally prohibitive due to the high cost of evaluating numerical models. To address this, the authors propose a machine learning model combined with dimensionality reduction using principal component analysis and the discrete cosine transform, along with a long short-term memory model, to predict dynamic responses at a fraction of the computational cost.
Share
Altmetrics
Final-revised paper
Preprint