Articles | Volume 10, issue 11
https://doi.org/10.5194/wes-10-2615-2025
https://doi.org/10.5194/wes-10-2615-2025
Research article
 | 
17 Nov 2025
Research article |  | 17 Nov 2025

Scalable SCADA-driven failure prediction for offshore wind turbines using autoencoder-based NBM and fleet-median filtering

Ivo Vervlimmeren, Xavier Chesterman, Timothy Verstraeten, Ann Nowé, and Jan Helsen

Related authors

Condition monitoring of wind turbine drivetrains: State-of-the-art technologies, recent trends, and future outlook
Kayacan Kestel, Xavier Chesterman, Donatella Zappalá, Simon Watson, Mingxin Li, Edward Hart, James Carroll, Yolanda Vidal, Amir R. Nejad, Shawn Sheng, Yi Guo, Matthias Stammler, Florian Wirsing, Ahmed Saleh, Nico Gregarek, Thao Baszenski, Thomas Decker, Martin Knops, Georg Jacobs, Benjamin Lehmann, Florian König, Ines Pereira, Pieter-Jan Daems, Cédric Peeters, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-168,https://doi.org/10.5194/wes-2025-168, 2025
Preprint under review for WES
Short summary
Leveraging signal processing and machine learning for automated fault detection in wind turbine drivetrains
Faras Jamil, Cédric Peeters, Timothy Verstraeten, and Jan Helsen
Wind Energ. Sci., 10, 1963–1978, https://doi.org/10.5194/wes-10-1963-2025,https://doi.org/10.5194/wes-10-1963-2025, 2025
Short summary
Spatio-temporal graph neural networks for power prediction in offshore wind farms using SCADA data
Simon Daenens, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 1137–1152, https://doi.org/10.5194/wes-10-1137-2025,https://doi.org/10.5194/wes-10-1137-2025, 2025
Short summary
Modular deep learning approach for wind farm power forecasting and wake loss prediction
Stijn Ally, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 779–812, https://doi.org/10.5194/wes-10-779-2025,https://doi.org/10.5194/wes-10-779-2025, 2025
Short summary
Impact of inflow conditions and turbine placement on the performance of offshore wind turbines exceeding 7 MW
Konstantinos Vratsinis, Rebeca Marini, Pieter-Jan Daems, Lukas Pauscher, Jeroen van Beeck, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-32,https://doi.org/10.5194/wes-2025-32, 2025
Revised manuscript under review for WES
Short summary

Cited articles

Beretta, M., Cárdenas, J. J., Koch, C., and Cusidó, J.: Wind fleet generator fault detection via SCADA alarms and autoencoders, Applied Sciences, 10, 8649, https://doi.org/10.3390/app10238649, 2020. a, b
Black, I. M., Richmond, M., and Kolios, A.: Condition monitoring systems: a systematic literature review on machine-learning methods improving offshore-wind turbine operational management, International Journal of Sustainable Energy, 40, 923–946, 2021. a, b
Canizo, M., Onieva, E., Conde, A., Charramendieta, S., and Trujillo, S.: Real-time predictive maintenance for wind turbines using Big Data frameworks, in: 2017 ieee international conference on prognostics and health management (icphm), pp. 70–77, IEEE, 2017. a
Carroll, J., McDonald, A., and McMillan, D.: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines, Wind energy, 19, 1107–1119, 2016. a
Chen, H., Liu, H., Chu, X., Liu, Q., and Xue, D.: Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network, Renewable Energy, 172, 829–840, 2021. a
Download
Short summary
We introduce a new method to refine failure prediction for wind turbines, leading to better and more efficient alarming. We do this by filtering detected anomalies based on the anomalies from the whole fleet. We compare submethods and find one that removes up to 65 % of detected anomalies while leaving the failure-predicting ones. We also detail how we trained the model that generated these anomalies and discuss the construction of the scalable pipeline that was used to deploy such models.
Share
Altmetrics
Final-revised paper
Preprint