Articles | Volume 10, issue 11
https://doi.org/10.5194/wes-10-2639-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-2639-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hurricane impacts in the United States East Coast offshore wind energy lease areas
Kelsey B. Thompson
CORRESPONDING AUTHOR
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
Rebecca J. Barthelmie
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
Sara C. Pryor
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
Related authors
No articles found.
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024, https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
Short summary
Using lidar-derived wind speed measurements at approx. 150 m height at onshore and offshore locations, we quantify the advantages of deploying wind turbines offshore in terms of the amount of electrical power produced and the higher reliability and predictability of the electrical power.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Short summary
Low-level jets (LLJs) are pronounced maxima in wind speed profiles affecting wind turbine performance and longevity. We present a climatology of LLJs over Iowa using output from the Weather Research and Forecasting (WRF) model and determine the rotor plane conditions when they occur. LLJ characteristics are highly sensitive to the identification criteria applied, and different (unique) LLJs are extracted with each criterion. LLJ characteristics also vary with different model output resolution.
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021, https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Cited articles
Avila, L. A. and Cangialosi, J.: Tropical Cyclone Report: Hurricane Irene, 45, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf (last access: 25 February 2025), 2011.
Baldini, L. M., Baldini, J. U. L., McElwaine, J. N., Frappier, A. B., Asmerom, Y., Liu, K.-B., Prufer, K. M., Ridley, H. E., Polyak, V., Kennett, D. J., Macpherson, C. G., Aquino, V. V., Awe, J., and Breitenbach, S. F. M.: Persistent northward North Atlantic tropical cyclone track migration over the past five centuries, Scientific Reports, 6, 37522, https://doi.org/10.1038/srep37522, 2016.
Barthelmie, R. J., Dantuono, K. E., Renner, E. J., Letson, F. L., and Pryor, S. C.: Extreme Wind and Waves in US East Coast Offshore Wind Energy Lease Areas, Energies, 14, 1053, https://doi.org/10.3390/en14041053, 2021.
Blake, E. S., Kimberlain, T. B., Berg, R. J., Cangialosi, J. P., and Beven II, J. L.: Tropical Cyclone Report: Hurricane Sandy, National Hurricane Center, 157, https://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf (last access: 25 February 2025), 2013.
Bodini, N., Optis, M., Redfern, S., Rosencrans, D., Rybchuk, A., Lundquist, J. K., Pronk, V., Castagneri, S., Purkayastha, A., Draxl, C., Krishnamurthy, R., Young, E., Roberts, B., Rosenlieb, E., and Musial, W.: The 2023 National Offshore Wind data set (NOW-23), Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, 2024.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, Journal of Geophysical Research: Oceans, 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999.
Calvo-Sancho, C., Quitián-Hernández, L., González-Alemán, J. J., Bolgiani, P., Santos-Muñoz, D., and Martín, M. L.: Assessing the performance of the HARMONIE-AROME and WRF-ARW numerical models in North Atlantic Tropical Transitions, Atmospheric Research, 291, 106801, https://doi.org/10.1016/j.atmosres.2023.106801, 2023.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Monthly Weather Review, 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001a.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation, Monthly Weather Review, 129, 587–604, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2, 2001b.
Chen, X. and Xu, J. Z.: Structural failure analysis of wind turbines impacted by super typhoon Usagi, Engineering Failure Analysis, 60, 391–404, https://doi.org/10.1016/j.engfailanal.2015.11.028, 2016.
Chen, Y. and Yau, M. K.: Asymmetric Structures in a Simulated Landfalling Hrricane, Journal of the Atmospheric Sciences, 60, 2294–2312, https://doi.org/10.1175/1520-0469(2003)060<2294:ASIASL>2.0.CO;2, 2003.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nature Communications, 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaria, M., Dudhia, J., Holland, G., Klemp, J., Michalakes, J., Reeves, H., Rotunno, R., Snyder, C., and Xiao, Q.: Prediction of Landfalling Hurricanes with the Advanced Hurricane WRF Model, Monthly Weather Review, 136, 1990–2005, https://doi.org/10.1175/2007MWR2085.1, 2008.
Drennan, W. M., Taylor, P. K., and Yelland, M. J.: Parameterizing the Sea Surface Roughness, Journal of Physical Oceanography, 35, 835–848, https://doi.org/10.1175/JPO2704.1, 2005.
Du, J., Bolaños, R., and Guo Larsén, X.: The use of a wave boundary layer model in SWAN, Journal of Geophysical Research: Oceans, 122, 42–62, https://doi.org/10.1002/2016JC012104, 2017.
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model, Journal of the Atmospheric Sciences, 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, Journal of Geophysical Research: Atmospheres, 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Fischer, T., Rainey, P., Bossanyi, E., and Kühn, M.: Study on Control Concepts suitable for Mitigation of Loads from Misaligned Wind and Waves on Offshore Wind Turbines supported on Monopiles, Wind Engineering, 35, 561–573, https://doi.org/10.1260/0309-524X.35.5.561, 2011.
Fischereit, J., Brown, R., Larsén, X. G., Badger, J., and Hawkes, G.: Review of Mesoscale Wind-Farm Parametrizations and Their Applications, Boundary-Layer Meteorology, 182, 175–224, https://doi.org/10.1007/s10546-021-00652-y, 2022.
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J., and Barstad, I.: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model, Monthly Weather Review, 140, 3017–3038, https://doi.org/10.1175/MWR-D-11-00352.1, 2012.
Foody, R., Coburn, J., Aird, J. A., Barthelmie, R. J., and Pryor, S. C.: Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States, Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024, 2024.
Fu, S., Huang, W., Luo, J., Yang, Z., Fu, H., Luo, Y., and Wang, B.: Deep Learning-Based Sea Surface Roughness Parameterization Scheme Improves Sea Surface Wind Forecast, Geophysical Research Letters, 50, e2023GL106580, https://doi.org/10.1029/2023GL106580, 2023.
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine, National Renewable Energy Lab. (NREL), Golden, CO (United States), 54, https://www.nrel.gov/docs/fy20osti/75698.pdf (last access: 25 February 2025), 2020.
Gaudet, B. J., García Medina, G., Krishnamurthy, R., Shaw, W. J., Sheridan, L. M., Yang, Z., Newsom, R. K., and Pekour, M.: Evaluation of Coupled Wind–Wave Model Simulations of Offshore Winds in the Mid-Atlantic Bight Using Lidar-Equipped Buoys, Monthly Weather Review, 150, 1377–1395, https://doi.org/10.1175/MWR-D-21-0166.1, 2022.
GWEC: Global Wind Report 2024, Global Wind Energy Council, Brussels, Belgium, 168, https://www.gwec.net/reports/globalwindreport/2024 (last access: 25 February 2025), 2024a.
GWEC: Global Offshore Wind Report 2024, Global Wind Energy Council, Brussels, Belgium, 156, https://www.gwec.net/reports/globaloffshorewindreport/2024 (last access: 25 February 2025), 2024b.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System, Journal of Computational Physics, 227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008.
Hallowell, S. T., Myers, A. T., Arwade, S. R., Pang, W., Rawal, P., Hines, E. M., Hajjar, J. F., Qiao, C., Valamanesh, V., Wei, K., Carswell, W., and Fontana, C. M.: Hurricane risk assessment of offshore wind turbines, Renewable Energy, 125, 234–249, https://doi.org/10.1016/j.renene.2018.02.090, 2018.
Han, T., McCann, G., Mücke, T. A., and Freudenreich, K.: How can a wind turbine survive in tropical cyclone?, Renewable Energy, 70, 3–10, https://doi.org/10.1016/j.renene.2014.02.014, 2014.
Hansen, T. A., Wilson, E. J., Fitts, J. P., Jansen, M., Beiter, P., Steffen, B., Xu, B., Guillet, J., Münster, M., and Kitzing, L.: Five grand challenges of offshore wind financing in the United States, Energy Research & Social Science, 107, 103329, https://doi.org/10.1016/j.erss.2023.103329, 2024.
Hashemi, M. R., Kresning, B., Hashemi, J., and Ginis, I.: Assessment of hurricane generated loads on offshore wind farms; a closer look at most extreme historical hurricanes in New England, Renewable Energy, 175, 593–609, https://doi.org/10.1016/j.renene.2021.05.042, 2021.
Hettmansperger, T. P. and Malin, J. S.: A modified Mood's test for location with no shape assumptions on the underlying distributions, Biometrika, 62, 527–529, https://doi.org/10.2307/2335398, 1975.
Hong, S.-Y. and Lim, J.-O. J.: The WRF single-moment 6-class microphysics scheme (WSM6), Journal of the Korean Meteorological Society, 42, 129–151, https://www.researchgate.net/publication/331192569_Hongandlim-JKMS-2006 (last access: 25 February 2025), 2006.
Hu, G. and Franzke, C. L. E.: Evaluation of Daily Precipitation Extremes in Reanalysis and Gridded Observation-Based Data Sets Over Germany, Geophysical Research Letters, 47, e2020GL08962, https://doi.org/10.1029/2020GL089624, 2020.
Huffman, G. J., Bolvin, D. T., Joyce, R., Kelley, O. A., Nelkin, E. J., Portier, A., Stocker, E. F., Tan, J., Watters, D. C., and West, B. J.: IMERG V07 Release Notes, 17, NASA Global Precipitation Measurement Mission, https://gpm.nasa.gov/sites/default/files/2024-02/IMERG_V07_ReleaseNotes_240221.pdf (last access: 25 February 2025), 2024.
IEC (International Electrotechnical Commission): IEC 61400-3-1:2019. Wind energy generation systems. Part 3–1: Design requirements for fixed offshore wind turbines, International Electrotechnical Commission, Geneva, Switzerland, ISBN 9780580944345, 2019a.
IEC (International Electrotechnical Commission): IEC 61400-1 Edition 4.0 2019-02 Wind turbines – Part 1: Design requirements, International Electrotechnical Commission, Geneva, Switzerland, ISBN 978-2-8322-6253-5, 2019b.
Jacob, R., Larson, J., and Ong, E.: M × N Communication and Parallel Interpolation in CCSM Using the Model Coupling Toolkit, 33, Argonne National Laboratory , https://www.mcs.anl.gov/research/projects/acpi/mct/mxnP1225.pdf (last access: 25 February 2025), 2005.
Jacobson, M. Z., Archer, C. L., and Kempton, W.: Taming hurricanes with arrays of offshore wind turbines, Nature Climate Change, 4, 195–200, https://doi.org/10.1038/nclimate2120, 2014.
Jansen, M., Staffell, I., Kitzing, L., Quoilin, S., Wiggelinkhuizen, E., Bulder, B., Riepin, I., and Müsgens, F.: Offshore wind competitiveness in mature markets without subsidy, Nature Energy, 5, 614–622, https://doi.org/10.1038/s41560-020-0661-2, 2020.
Ju, S.-H., Hsu, H.-H., and Hsiao, T.-Y.: Three-dimensional wind fields of tropical cyclones for wind turbine structures, Ocean Engineering, 237, 109437, https://doi.org/10.1016/j.oceaneng.2021.109437, 2021.
Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, Journal of Applied Meteorology, 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Khaira, U. and Astitha, M.: Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States, Remote Sensing, 15, 3219, https://doi.org/10.3390/rs15133219, 2023.
Koukoura, C., Brown, C., Natarajan, A., and Vesth, A.: Cross-wind fatigue analysis of a full scale offshore wind turbine in the case of wind–wave misalignment, Engineering Structures, 120, 147–157, https://doi.org/10.1016/j.engstruct.2016.04.027, 2016.
Kresning, B., Hashemi, M. R., and Gallucci, C.: Simulation of Hurricane Loading for Proposed Offshore Windfarms off the US Northeast Coast, Journal of Physics: Conference Series, 12 pp., https://doi.org/10.1088/1742-6596/1452/1/012026, 2020.
Kresning, B., Hashemi, M. R., Shirvani, A., and Hashemi, J.: Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions, Renewable Energy, 220, 119570, https://doi.org/10.1016/j.renene.2023.119570, 2024.
Lackmann, G. M.: Hurricane Sandy before 1900 and after 2100, Bulletin of the American Meteorological Society, 96, 547–560, https://doi.org/10.1175/BAMS-D-14-00123.1, 2015.
Landsea, C. W. and Franklin, J. L.: Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format, Monthly Weather Review, 141, 3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013.
Larsén, X. G. and Ott, S.: Adjusted spectral correction method for calculating extreme winds in tropical-cyclone-affected water areas, Wind Energ. Sci., 7, 2457–2468, https://doi.org/10.5194/wes-7-2457-2022, 2022.
Larsén, X. G., Ott, S., Badger, J., Hahmann, A. N., and Mann, J.: Recipes for Correcting the Impact of Effective Mesoscale Resolution on the Estimation of Extreme Winds, Journal of Applied Meteorology and Climatology, 51, 521–533, https://doi.org/10.1175/JAMC-D-11-090.1, 2012.
Larsén, X. G., Du, J., Bolaños, R., Imberger, M., Kelly, M. C., Badger, M., and Larsen, S.: Estimation of offshore extreme wind from wind-wave coupled modeling, Wind Energy, 22, 1043–1057, https://doi.org/10.1002/we.2339, 2019.
Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models, International Journal of High Performance Computing Applications, 19, 277–292, https://doi.org/10.1177/1094342005056115, 2005.
Li, J., Li, Z., Jiang, Y., and Tang, Y.: Typhoon Resistance Analysis of Offshore Wind Turbines: A Review, Atmosphere, 13, 451, https://doi.org/10.3390/atmos13030451, 2022.
Li, S. and Chen, C.: Air-sea interaction processes during hurricane Sandy: Coupled WRF-FVCOM model simulations, Progress in Oceanography, 206, 102855, https://doi.org/10.1016/j.pocean.2022.102855, 2022.
Liu, N., Ling, T., Wang, H., Zhang, Y., Gao, Z., and Wang, Y.: Numerical Simulation of Typhoon Muifa (2011) Using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System, Journal of Ocean University of China, 14, 199–209, https://doi.org/10.1007/s11802-015-2415-5, 2015.
Marks, F. D., Black, P. G., Montgomery, M. T., and Burpee, R. W.: Structure of the Eye and Eyewall of Hurricane Hugo (1989), Monthly Weather Review, 136, 1237–1259, https://doi.org/10.1175/2007MWR2073.1, 2008.
Martín del Campo, J. O., Pozos-Estrada, A., and Pozos-Estrada, O.: Development of fragility curves of land-based wind turbines with tuned mass dampers under cyclone and seismic loading, Wind Energy, 24, 737–753, https://doi.org/10.1002/we.2600, 2021.
Marvel, K., Kravitz, B., and Caldeira, K.: Geophysical limits to global wind power, Nature Climate Change, 3, 118–121, https://doi.org/10.1038/nclimate1683, 2013.
McElman, S., Verma, A. S., and Goupee, A.: Quantifying tropical-cyclone-generated waves in extreme-value-derived design for offshore wind, Wind Energ. Sci., 10, 1529–1550, https://doi.org/10.5194/wes-10-1529-2025, 2025.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, Journal of Geophysical Research: Atmospheres, 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Mooney, P. A., Gill, D. O., Mulligan, F. J., and Bruyère, C. L.: Hurricane simulation using different representations of atmosphere–ocean interaction: the case of Irene (2011), Atmospheric Science Letters, 17, 415–421, https://doi.org/10.1002/asl.673, 2016.
Mooney, P. A., Mulligan, F. J., Bruyère, C. L., Parker, C. L., and Gill, D. O.: Investigating the performance of coupled WRF-ROMS simulations of Hurricane Irene (2011) in a regional climate modeling framework, Atmospheric Research, 215, 57–74, https://doi.org/10.1016/j.atmosres.2018.08.017, 2019.
Morin, G., Boudreault, M., and García-Franco, J. L.: A Global Multi-Source Tropical Cyclone Precipitation (MSTCP) Dataset, Scientific Data, 11, 609, https://doi.org/10.1038/s41597-024-03395-w, 2024.
Mudd, L. A. and Vickery, P. J.: Gulf of Mexico Hurricane Risk Assessment for Offshore Wind Energy Sites, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2024-123, in review, 2024.
Mukherjee, P. and Ramakrishnan, B.: On the understanding of very severe cyclone storm Ockhi with the WRF-ARW model, Environmental Research: Climate, 1, 015002, https://doi.org/10.1088/2752-5295/ac6adb, 2022.
Müller, S., Larsén, X. G., and Verelst, D. R.: Tropical cyclone low-level wind speed, shear, and veer: sensitivity to the boundary layer parametrization in the Weather Research and Forecasting model, Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024, 2024.
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog, Boundary-Layer Meteorology, 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8, 2006.
NDBC: Handbook of Automated Data Quality Control Checks and Procedures, 78, National Data Buoy Center, https://cdn.ioos.noaa.gov/media/2017/12/ndbc_handbook_automated_data_quality_control_2009.pdf (last access: 25 February 2025), 2009.
NDBC: Handbook of Automated Data Quality Control Checks and Procedures, 50, National Data Buoy Center, https://www.ndbc.noaa.gov/publications/NDBCHandbookofAutomatedDataQualityControl2023.pdf (last access: 25 February 2025), 2023.
Nie, Y. and Sun, J.: Evaluation of High-Resolution Precipitation Products over Southwest China, Journal of Hydrometeorology, 21, 2691–2712, https://doi.org/10.1175/JHM-D-20-0045.1, 2020.
Oost, W. A., Komen, G. J., Jacobs, C. M. J., and Van Oort, C.: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE, Boundary-Layer Meteorology, 103, 409–438, https://doi.org/10.1023/A:1014913624535, 2002.
Pan, Y., Yan, C., and Archer, C. L.: Precipitation reduction during Hurricane Harvey with simulated offshore wind farms, Environmental Research Letters, 13, 084007, https://doi.org/10.1088/1748-9326/aad245, 2018.
Petrović, V. and Bottasso, C. L.: Wind turbine optimal control during storms, Journal of Physics: Conference Series, 012052, https://doi.org/10.1088/1742-6596/524/1/012052, 2014.
Porchetta, S., Temel, O., Muñoz-Esparza, D., Reuder, J., Monbaliu, J., van Beeck, J., and van Lipzig, N.: A new roughness length parameterization accounting for wind–wave (mis)alignment, Atmos. Chem. Phys., 19, 6681–6700, https://doi.org/10.5194/acp-19-6681-2019, 2019.
Porchetta, S., Temel, O., Warner, J. C., Muñoz-Esparza, D., Monbaliu, J., van Beeck, J., and van Lipzig, N.: Evaluation of a roughness length parametrization accounting for wind–wave alignment in a coupled atmosphere–wave model, Quarterly Journal of the Royal Meteorological Society, 147, 825–846, https://doi.org/10.1002/qj.3948, 2020.
Porchetta, S., Muñoz-Esparza, D., Munters, W., van Beeck, J., and van Lipzig, N.: Impact of ocean waves on offshore wind farm power production, Renewable Energy, 180, 1179–1193, https://doi.org/10.1016/j.renene.2021.08.111, 2021.
Powell, M. D. and Reinhold, T. A.: Tropical Cyclone Destructive Potential by Integrated Kinetic Energy, Bulletin of the American Meteorological Society, 88, 513–526, https://doi.org/10.1175/BAMS-88-4-513 , 2007.
Pryor, S. C. and Barthelmie, R. J.: A global assessment of extreme wind speeds for wind energy applications, Nature Energy, 6, 268–276, https://doi.org/10.1038/s41560-020-00773-7, 2021.
Pryor, S. C. and Barthelmie, R. J.: Wind shadows impact planning of large offshore wind farms, Applied Energy, 359, 122755, https://doi.org/10.1016/j.apenergy.2024.122755, 2024a.
Pryor, S. C. and Barthelmie, R. J.: Power Production, Inter-and Intra-Array Wake Losses from the US East Coast Offshore Wind Energy Lease Areas, Energies, 17, 1063, https://doi.org/10.3390/en17051063, 2024b.
Pryor, S. C., Barthelmie, R. J., and Shepherd, T. J.: Wind power production from very large offshore wind farms, Joule, 5, 2663–2686, https://doi.org/10.1016/j.joule.2021.09.002, 2021.
Riehl, H. and Malkus, J.: Some Aspects of Hurricane Daisy, 1958, Tellus, 13, 181–213, https://doi.org/10.3402/tellusa.v13i2.9495, 1961.
Rose, S., Jaramillo, P., Small, M. J., Grossmann, I., and Apt, J.: Hurricane Risk to Offshore Wind Turbines Along the U. S. Coast, Carnegie Mellon University, https://www.cmu.edu/ceic/assets/docs/publications/working-papers/ceic-12-01.pdf (last access: 25 February 2025), 2012a.
Rose, S., Jaramillo, P., Small, M. J., Grossmann, I., and Apt, J.: Quantifying the hurricane risk to offshore wind turbines, Proceedings of the National Academy of Sciences USA, 109, 3247–3252, https://doi.org/10.1073/pnas.1111769109, 2012b.
Schreck III, C. J., Klotzbach, P. J., and Bell, M. M.: Optimal Climate Normals for North Atlantic Hurricane Activity, Geophysical Research Letters, 48, https://doi.org/10.1029/2021GL092864, 2021.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624, Journal of Computational Physics, 228, 8985–9000, https://doi.org/10.1016/j.jcp.2009.09.002, 2009.
Skamarock, W. C.: Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra, Monthly Weather Review, 132, 3019–3032, https://doi.org/10.1175/MWR2830.1, 2004.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A Description of the Advanced Research WRF Version 4, 162, National Center for Atmospheric Research, https://opensky.ucar.edu/islandora/object/technotes:576 (last access: 25 February 2025), 2019.
Stewart, G. M. and Lackner, M. A.: The impact of passive tuned mass dampers and wind–wave misalignment on offshore wind turbine loads, Engineering Structures, 73, 54–61, https://doi.org/10.1016/j.engstruct.2014.04.045, 2014.
Taft, B., Burdette, M., Riley, R., Hansen, B., Wells, W., Maxwell, D., and Mettlach, T.: Development of an NDBC standard buoy, OCEANS 2009, 1–10, https://doi.org/10.23919/OCEANS.2009.5422444, 2009.
Taylor, P. K. and Yelland, M. J.: The dependence of Sea Surface Roughness on the Height and Steepness of the Waves, Journal of Physical Oceanography, 31, 572–590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2, 2001.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified Noah land surface model in the WRF model (Formerly Paper Number 17.5), Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 6 pp., https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last access: 25 February 2025), 2004.
Thompson, K. B., Barthelmie, R. J., and Pryor, S. C.: Hurricane impacts in the U.S. East Coast offshore wind energy lease areas, Zenodo [data set], https://doi.org/10.5281/zenodo.14895862, 2025.
United States Geological Survey: COAWST, GitHub [code], https://github.com/DOI-USGS/COAWST (last access: 5 February 2024), 2019.
Valamanesh, V., Myers, A. T., Hajjar, J. F., and Arwade, S. R.: Probabilistic Modeling of Joint Hurricane-induced Wind and Wave Hazards to Offshore Wind Farms on the Atlantic Coast, International Conference on Structural Safety and Reliability (ICOSSAR), Columbia University, New York, NY, https://people.umass.edu/~arwade/owt_hurricanes/valamanesh_myers_hajjar.pdf (last access: 25 February 2025), 2013.
Valamanesh, V., Myers, A. T., and Arwade, S. R.: Multivariate analysis of extreme metocean conditions for offshore wind turbines, Structural Safety, 55, 60–69, https://doi.org/10.1016/j.strusafe.2015.03.002, 2015.
Wang, J., Hendricks, E., Rozoff, C. M., Churchfield, M., Zhu, L., Feng, S., Pringle, W. J., Biswas, M., Haupt, S. E., Deskos, G., Jung, C., Xue, P., Berg, L. K., Bryan, G., Kosovic, B., and Kotamarthi, R.: Modeling and observations of North Atlantic cyclones: Implications for US Offshore wind energy, Journal of Renewable and Sustainable Energy, 16, https://doi.org/10.1063/5.0214806, 2024.
Warner, J. C., Perlin, N., and Skyllingstad, E. D.: Using the Model Coupling Toolkit to couple earth system models, Environmental Modelling & Software, 23, 1240–1249, https://doi.org/10.1016/j.envsoft.2008.03.002, 2008.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System, Ocean Modelling, 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Wiser, R., Rand, J., Seel, J., Beiter, P., Baker, E., Lantz, E., and Gilman, P.: Expert elicitation survey predicts 37 % to 49 % declines in wind energy costs by 2050, Nature Energy, 6, 555–565, https://doi.org/10.1038/s41560-021-00810-z, 2021.
Xie, L., Yan, T., Pietrafesa, L. J., Morrison, J. M., and Karl, T.: Climatology and Interannual Variability of North Atlantic Hurricane Tracks, Journal of Climate, 18, 5370–5381, https://doi.org/10.1175/JCLI3560.1, 2005.
Yihe, X.: 'Super typhoon' devastates wind farm on Chinese coast, RECHARGE, https://www.rechargenews.com/wind/super-typhoon-devastates-wind-farm-on-chinese-coast/2-1-1706161 (last access: 25 February 2025), 2024.
Zambon, J. B., He, R., and Warner, J. C.: Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model, Ocean Dynamics, 64, 1535–1554, https://doi.org/10.1007/s10236-014-0777-7, 2014a.
Zambon, J. B., He, R., and Warner, J. C.: Tropical to extratropical: Marine environmental changes associated with Superstorm Sandy prior to its landfall, Geophysical Research Letters, 41, 8935–8943, https://doi.org/10.1002/2014GL061357, 2014b.
Short summary
Wind turbines in offshore lease areas (LAs) along the eastern US may be impacted by hurricanes. Regional simulations with atmosphere-only and coupled atmosphere–ocean–wave regional models reproduce historical hurricanes well and indicate no exceedance of 50 m s-1 wind speeds in the LAs and only brief periods with low power production. Coupled simulations lead to more intense hurricanes, possibly indicating that previous atmosphere-only simulations underestimate the risk to offshore wind turbines.
Wind turbines in offshore lease areas (LAs) along the eastern US may be impacted by hurricanes....
Altmetrics
Final-revised paper
Preprint