Articles | Volume 10, issue 12
https://doi.org/10.5194/wes-10-2865-2025
https://doi.org/10.5194/wes-10-2865-2025
Research article
 | 
05 Dec 2025
Research article |  | 05 Dec 2025

Data-driven probabilistic surrogate model for floating wind turbine lifetime damage equivalent load prediction

Deepali Singh, Erik Haugen, Kasper Laugesen, Richard P. Dwight, and Axelle Viré

Related authors

Probabilistic surrogate modeling of damage equivalent loads on onshore and offshore wind turbines using mixture density networks
Deepali Singh, Richard Dwight, and Axelle Viré
Wind Energ. Sci., 9, 1885–1904, https://doi.org/10.5194/wes-9-1885-2024,https://doi.org/10.5194/wes-9-1885-2024, 2024
Short summary

Cited articles

Abdallah, I., Lataniotis, C., and Sudret, B.: Parametric hierarchical kriging for multi-fidelity aero-servo-elastic simulators – Application to extreme loads on wind turbines, Probabilistic Engineering Mechanics, 55, 67–77, https://doi.org/10.1016/j.probengmech.2018.10.001, 2019. a
Arramounet, V., Winter, C. E., Maljaars, N., Girardin, S., and Robic, H.: Development of coupling module between BHawC aeroelastic software and OrcaFlex for coupled dynamic analysis of floating wind turbines, Journal of Physics: Conference Series, 1356, 1–15, https://doi.org/10.1088/1742-6596/1356/1/012007, 2019. a, b, c
Avendaño-Valencia, L. D., Abdallah, I., and Chatzi, E.: Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression, Renewable Energy, 170, 539–561, https://doi.org/10.1016/j.renene.2021.02.003, 2021. a
Bishop, C. M.: Mixture density networks, Tech. rep., Aston University, ISBN NCRG/94/004, 1994. a, b
Björck, A.: AERFORCE: Subroutine Package for unsteady Blade-Element/Momentum Calculations, Tech. rep. (FFA TN 2000-07), Flygtekniska Försörskanstalten, Bromma, Sweden, https://share.google/ZY2v9gavPkVuJbPeH (last access: 04 December 2025), 2000. a
Download
Short summary
We developed a fast, probabilistic surrogate model to predict fatigue loads on floating wind turbines based on site conditions. Unlike traditional methods, our approach directly uses site data, avoiding complex binning or distribution fitting. A mixture density network is used to capture uncertainties and enables quick lifetime fatigue estimates.
Share
Altmetrics
Final-revised paper
Preprint