Articles | Volume 10, issue 3
https://doi.org/10.5194/wes-10-579-2025
https://doi.org/10.5194/wes-10-579-2025
Research article
 | 
20 Mar 2025
Research article |  | 20 Mar 2025

Exploring noise annoyance and sound quality for airborne wind energy systems: insights from a listening experiment

Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet J. R. van Gool, and Roland Schmehl

Related authors

Kite as a Sensor: Wind and State Estimation in Tethered Flying Systems
Oriol Cayon, Simon Watson, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-182,https://doi.org/10.5194/wes-2024-182, 2025
Preprint under review for WES
Short summary
Optimal Flight Pattern Debate for Airborne Wind Energy Systems: Circular or Figure-of-eight?
Dylan Eijkelhof, Nicola Rossi, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-139,https://doi.org/10.5194/wes-2024-139, 2024
Preprint under review for WES
Short summary
Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci., 9, 2261–2282, https://doi.org/10.5194/wes-9-2261-2024,https://doi.org/10.5194/wes-9-2261-2024, 2024
Short summary
System design and scaling trends for airborne wind energy
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-161,https://doi.org/10.5194/wes-2024-161, 2024
Revised manuscript accepted for WES
Short summary
Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024,https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary

Cited articles

Aguinis, H., Gottfredson, R. K., and Culpepper, S. A.: Recommendations for estimating cross-level interaction effects using multilevel modeling, Academy of Management Proceedings, 2013, 10839, https://doi.org/10.5465/ambpp.2013.10839abstract, 2013. 
Alamir, M. A., Hansen, K. L., Zajamsek, B., and Catcheside, P.: Subjective responses to wind farm noise: A review of laboratory listening test methods, Renew. Sustain. Energ. Rev., 114, 109317, https://doi.org/10.1016/j.rser.2019.109317, 2019. 
Aures, W.: Procedure for calculating the sensory euphony of arbitrary sound signal, Acustica, 59, 130–141, 1985. 
Bakker, R. H., Pedersen, E., van den Berg, G. P., Stewart, R. E., Lok, W., and Bouma, J.: Impact of wind turbine sound on annoyance, self-reported sleep disturbance and psychological distress, Sci. Total Environ., 425, 42–51, https://doi.org/10.1016/J.SCITOTENV.2012.03.005, 2012. 
Bates, D., Maechler, M., Bolker, B., Walker, S., Bojesen Christensen, R. H., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., Bauer, A., Krivitsky, P. N., Tanaka, E., and Jagan, M.: Package “lme4” – Linear Mixed-Effects Models using “Eigen” and S4, http://dk.archive.ubuntu.com/pub/pub/cran/web/packages/lme4/lme4.pdf (last access: 11 June 2024), 2024. 
Download
Short summary
This study investigates noise annoyance caused by airborne wind energy systems (AWESs), a novel wind energy technology that uses kites to harness high-altitude winds. Through a listening experiment with 75 participants, sharpness was identified as the key factor predicting annoyance. Fixed-wing kites generated more annoyance than soft-wing kites, likely due to their sharper, more tonal sound. The findings can help improve AWESs’ designs, reducing noise-related disturbances for nearby residents.
Share
Altmetrics
Final-revised paper
Preprint