Articles | Volume 10, issue 5
https://doi.org/10.5194/wes-10-987-2025
https://doi.org/10.5194/wes-10-987-2025
Research article
 | 
28 May 2025
Research article |  | 28 May 2025

Analysis and calibration of optimal power balance rotor-effective wind speed estimation schemes for large-scale wind turbines

Atindriyo Kusumo Pamososuryo, Fabio Spagnolo, and Sebastiaan Paul Mulders

Related authors

Output-constrained individual pitch control methods using the multiblade coordinate transformation: Trading off actuation effort and blade fatigue load reduction for wind turbines
Jesse Ishi Storm Hummel, Jens Kober, and Sebastiaan Paul Mulders
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-153,https://doi.org/10.5194/wes-2024-153, 2025
Revised manuscript accepted for WES
Short summary
COFLEX: A novel set point optimiser and feedforward-feedback control scheme for large flexible wind turbines
Guido Lazzerini, Jacob Deleuran Grunnet, Tobias Gybel Hovgaard, Fabio Caponetti, Vasu Datta Madireddi, Delphine De Tavernier, and Sebastiaan Paul Mulders
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-151,https://doi.org/10.5194/wes-2024-151, 2024
Revised manuscript accepted for WES
Short summary
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024,https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Analysis and multi-objective optimisation of wind turbine torque control strategies
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023,https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Control design, implementation, and evaluation for an in-field 500 kW wind turbine with a fixed-displacement hydraulic drivetrain
Sebastiaan Paul Mulders, Niels Frederik Boudewijn Diepeveen, and Jan-Willem van Wingerden
Wind Energ. Sci., 3, 615–638, https://doi.org/10.5194/wes-3-615-2018,https://doi.org/10.5194/wes-3-615-2018, 2018
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Coleman-free aero-elastic stability methods for three- and two-bladed floating wind turbines
Bogdan Pamfil, Henrik Bredmose, and Taeseong Kim
Wind Energ. Sci., 10, 827–856, https://doi.org/10.5194/wes-10-827-2025,https://doi.org/10.5194/wes-10-827-2025, 2025
Short summary
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024,https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Extension of the Langevin power curve analysis by separation per operational state
Christian Wiedemann, Hendrik Bette, Matthias Wächter, Jan A. Freund, Thomas Guhr, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-52,https://doi.org/10.5194/wes-2024-52, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a
Åström, K. and Wittenmark, B.: Computer-Controlled Systems: Theory and Design, Third Edition, Dover Books on Electrical Engineering, Dover Publications, ISBN 9780486486130, https://books.google.nl/books?id=9Y6D5vviqMgC (last access: 5 November 2024), 2011. a, b, c, d
Bortolotti, P., Tarres, H. C., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind Task 37 on Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. rep., International Energy Agency, https://www.nrel.gov/docs/fy19osti/73492.pdf (last access: 5 November 2024), 2019. a
Bossanyi, E. A.: The Design of Closed Loop Controllers for Wind Turbines, Wind Energy, 3, 149–163, https://doi.org/10.1002/we.34, 2000. a, b, c, d
Boukhezzar, B. and Siguerdidjane, H.: Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model, IEEE T. Energy Conver., 26, 149–162, https://doi.org/10.1109/TEC.2010.2090155, 2011. a, b, c, d
Download
Short summary
As wind turbines grow in size, measuring wind speed accurately becomes challenging, impacting their performance. Traditional sensors cannot capture wind variations across large rotor areas. To address this, a new method is developed to estimate wind speed accurately, accounting for these variations. Using mid-fidelity simulations, our approach showed better tracking, better noise resilience, and easy tuning for different turbine sizes.
Share
Altmetrics
Final-revised paper
Preprint