Articles | Volume 10, issue 5
https://doi.org/10.5194/wes-10-987-2025
https://doi.org/10.5194/wes-10-987-2025
Research article
 | 
28 May 2025
Research article |  | 28 May 2025

Analysis and calibration of optimal power balance rotor-effective wind speed estimation schemes for large-scale wind turbines

Atindriyo Kusumo Pamososuryo, Fabio Spagnolo, and Sebastiaan Paul Mulders

Related authors

Output-constrained individual pitch control methods using the multiblade coordinate transformation: trading off actuation effort and blade fatigue load reduction for wind turbines
Jesse I. S. Hummel, Jens Kober, and Sebastiaan P. Mulders
Wind Energ. Sci., 10, 2005–2023, https://doi.org/10.5194/wes-10-2005-2025,https://doi.org/10.5194/wes-10-2005-2025, 2025
Short summary
COFLEX: a novel set point optimiser and feedforward–feedback control scheme for large, flexible wind turbines
Guido Lazzerini, Jacob Deleuran Grunnet, Tobias Gybel Hovgaard, Fabio Caponetti, Vasu Datta Madireddi, Delphine De Tavernier, and Sebastiaan Paul Mulders
Wind Energ. Sci., 10, 1303–1327, https://doi.org/10.5194/wes-10-1303-2025,https://doi.org/10.5194/wes-10-1303-2025, 2025
Short summary
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024,https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Analysis and multi-objective optimisation of wind turbine torque control strategies
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023,https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary

Cited articles

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a
Åström, K. and Wittenmark, B.: Computer-Controlled Systems: Theory and Design, Third Edition, Dover Books on Electrical Engineering, Dover Publications, ISBN 9780486486130, https://books.google.nl/books?id=9Y6D5vviqMgC (last access: 5 November 2024), 2011. a, b, c, d
Bortolotti, P., Tarres, H. C., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind Task 37 on Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. rep., International Energy Agency, https://www.nrel.gov/docs/fy19osti/73492.pdf (last access: 5 November 2024), 2019. a
Bossanyi, E. A.: The Design of Closed Loop Controllers for Wind Turbines, Wind Energy, 3, 149–163, https://doi.org/10.1002/we.34, 2000. a, b, c, d
Boukhezzar, B. and Siguerdidjane, H.: Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model, IEEE T. Energy Conver., 26, 149–162, https://doi.org/10.1109/TEC.2010.2090155, 2011. a, b, c, d
Download
Short summary
As wind turbines grow in size, measuring wind speed accurately becomes challenging, impacting their performance. Traditional sensors cannot capture wind variations across large rotor areas. To address this, a new method is developed to estimate wind speed accurately, accounting for these variations. Using mid-fidelity simulations, our approach showed better tracking, better noise resilience, and easy tuning for different turbine sizes.
Share
Altmetrics
Final-revised paper
Preprint