Articles | Volume 2, issue 2
https://doi.org/10.5194/wes-2-443-2017
https://doi.org/10.5194/wes-2-443-2017
Research article
 | 
29 Aug 2017
Research article |  | 29 Aug 2017

A validation and code-to-code verification of FAST for a megawatt-scale wind turbine with aeroelastically tailored blades

Srinivas Guntur, Jason Jonkman, Ryan Sievers, Michael A. Sprague, Scott Schreck, and Qi Wang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (11 Jul 2017) by Gerard J.W. van Bussel
AR by Srinivas Guntur on behalf of the Authors (17 Jul 2017)  Author's response   Manuscript 
ED: Publish as is (27 Jul 2017) by Gerard J.W. van Bussel
ED: Publish as is (27 Jul 2017) by Gerard J.W. van Bussel (Chief editor)
AR by Srinivas Guntur on behalf of the Authors (27 Jul 2017)  Manuscript 
Download
Short summary
This paper presents a validation and code-to-code verification of the U.S. Dept of Energy/NREL wind turbine aeroelastic code, FAST v8, on a 2.3 MW wind turbine. Model validation is critical to any model-based research and development activity, and validation efforts on large turbines, as the current one, are extremely rare, mainly due to the scale. This paper, which was a collaboration between NREL and Siemens Wind Power, successfully demonstrates and validates the capabilities of FAST.
Altmetrics
Final-revised paper
Preprint