Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

CiteScore value: 0.6
CiteScore
0.6
h5-index value: 13
h5-index13
Volume 2, issue 2
Wind Energ. Sci., 2, 443–468, 2017
https://doi.org/10.5194/wes-2-443-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Wind Energ. Sci., 2, 443–468, 2017
https://doi.org/10.5194/wes-2-443-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Aug 2017

Research article | 29 Aug 2017

A validation and code-to-code verification of FAST for a megawatt-scale wind turbine with aeroelastically tailored blades

Srinivas Guntur et al.

Related authors

Sensitivity analysis of the effect of wind characteristics and turbine properties on wind turbine loads
Amy N. Robertson, Kelsey Shaler, Latha Sethuraman, and Jason Jonkman
Wind Energ. Sci., 4, 479–513, https://doi.org/10.5194/wes-4-479-2019,https://doi.org/10.5194/wes-4-479-2019, 2019
Short summary
Adaptive stratified importance sampling: hybridization of extrapolation and importance sampling Monte Carlo methods for estimation of wind turbine extreme loads
Peter Graf, Katherine Dykes, Rick Damiani, Jason Jonkman, and Paul Veers
Wind Energ. Sci., 3, 475–487, https://doi.org/10.5194/wes-3-475-2018,https://doi.org/10.5194/wes-3-475-2018, 2018
Short summary
Trailed vorticity modeling for aeroelastic wind turbine simulations in standstill
Georg R. Pirrung, Helge A. Madsen, and Scott Schreck
Wind Energ. Sci., 2, 521–532, https://doi.org/10.5194/wes-2-521-2017,https://doi.org/10.5194/wes-2-521-2017, 2017
Short summary
Atmospheric turbulence affects wind turbine nacelle transfer functions
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 2, 295–306, https://doi.org/10.5194/wes-2-295-2017,https://doi.org/10.5194/wes-2-295-2017, 2017
Short summary
Wind turbine power production and annual energy production depend on atmospheric stability and turbulence
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 1, 221–236, https://doi.org/10.5194/wes-1-221-2016,https://doi.org/10.5194/wes-1-221-2016, 2016
Short summary

Related subject area

Aerodynamics and hydrodynamics
The flow past a flatback airfoil with flow control devices: benchmarking numerical simulations against wind tunnel data
George Papadakis and Marinos Manolesos
Wind Energ. Sci., 5, 911–927, https://doi.org/10.5194/wes-5-911-2020,https://doi.org/10.5194/wes-5-911-2020, 2020
Short summary
On the velocity at wind turbine and propeller actuator discs
Gijs A. M. van Kuik
Wind Energ. Sci., 5, 855–865, https://doi.org/10.5194/wes-5-855-2020,https://doi.org/10.5194/wes-5-855-2020, 2020
Short summary
Cartographing dynamic stall with machine learning
Matthew Lennie, Johannes Steenbuck, Bernd R. Noack, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 819–838, https://doi.org/10.5194/wes-5-819-2020,https://doi.org/10.5194/wes-5-819-2020, 2020
Short summary
Top-level rotor optimisations based on actuator disc theory
Peter Jamieson
Wind Energ. Sci., 5, 807–818, https://doi.org/10.5194/wes-5-807-2020,https://doi.org/10.5194/wes-5-807-2020, 2020
Short summary
Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers
Axelle Viré, Adriaan Derksen, Mikko Folkersma, and Kumayl Sarwar
Wind Energ. Sci., 5, 793–806, https://doi.org/10.5194/wes-5-793-2020,https://doi.org/10.5194/wes-5-793-2020, 2020
Short summary

Cited articles

Bayarri, M., Berger, J., Paulo, R., Sacks, J., cafeo, J., Cavendish, J., and Lin, C.-H.: A Framework for Validation of Computer Models, in: Technometrics, 49, 138–154, American Statistical Association and the American Society for Quality, https://doi.org/10.1198/004017007000000092, 2007.
Bergami, L. and Gaunaa, M.: Analysis of aeroelastic loads and their contributions to fatigue damage, Journal of Physics: Conference Series, 555, 012007, http://stacks.iop.org/1742-6596/555/i=1/a=012007, 2014.
Blasques, J. P., Bitsche, R. D., Fedorov, V., and Lazarov, B. S.: Accuracy of an efficient framework for structural analysis of wind turbine blades, Wind Energy, 19, 1603–1621, https://doi.org/10.1002/we.1939, 2016.
Damiani, R., Haymany, G., Wangz, Q., Jonkman, J., and Gonzalez, A.: Development and Validation of a New Unsteady Airfoil Aerodynamics Model Within AeroDyn, in: 34th Wind Energy Symposium, American Institute of Aeronautics and Astronautics, San Diego, CA, 2016.
Guntur, S., Jonkman, J., Schreck, S., Jonkman, B., Wang, Q., Sprague, M., Hind, M., and Sievers, R.: FAST v8 Verification and Validation for a Megawatt-Scale Wind Turbine with Aeroelastically Tailored Blades, in: 34th Wind Energy Symposium, AIAA SciTech, San Diego, CA, USA, https://doi.org/10.2514/6.2016-1008, 2016.
Publications Copernicus
Download
Short summary
This paper presents a validation and code-to-code verification of the U.S. Dept of Energy/NREL wind turbine aeroelastic code, FAST v8, on a 2.3 MW wind turbine. Model validation is critical to any model-based research and development activity, and validation efforts on large turbines, as the current one, are extremely rare, mainly due to the scale. This paper, which was a collaboration between NREL and Siemens Wind Power, successfully demonstrates and validates the capabilities of FAST.
This paper presents a validation and code-to-code verification of the U.S. Dept of Energy/NREL...
Citation