Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1743–1754, 2020
https://doi.org/10.5194/wes-5-1743-2020

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 5, 1743–1754, 2020
https://doi.org/10.5194/wes-5-1743-2020

Research article 17 Dec 2020

Research article | 17 Dec 2020

Fatigue lifetime calculation of wind turbine blade bearings considering blade-dependent load distribution

Oliver Menck et al.

Related authors

Friction torque of wind-turbine pitch bearings – comparison of experimental results with available models
Matthias Stammler, Fabian Schwack, Norbert Bader, Andreas Reuter, and Gerhard Poll
Wind Energ. Sci., 3, 97–105, https://doi.org/10.5194/wes-3-97-2018,https://doi.org/10.5194/wes-3-97-2018, 2018
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year-long large-eddy simulation over the North Sea
Gerard Schepers, Pim van Dorp, Remco Verzijlbergh, Peter Baas, and Harmen Jonker
Wind Energ. Sci., 6, 983–996, https://doi.org/10.5194/wes-6-983-2021,https://doi.org/10.5194/wes-6-983-2021, 2021
Short summary
Optimal scheduling of the next preventive maintenance activity for a wind farm
Quanjiang Yu, Michael Patriksson, and Serik Sagitov
Wind Energ. Sci., 6, 949–959, https://doi.org/10.5194/wes-6-949-2021,https://doi.org/10.5194/wes-6-949-2021, 2021
Short summary
A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915, https://doi.org/10.5194/wes-6-903-2021,https://doi.org/10.5194/wes-6-903-2021, 2021
Short summary
A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence
Kenneth Loenbaek, Christian Bak, and Michael McWilliam
Wind Energ. Sci., 6, 917–933, https://doi.org/10.5194/wes-6-917-2021,https://doi.org/10.5194/wes-6-917-2021, 2021
Short summary
Wind farm layout optimization using pseudo-gradients
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021,https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary

Cited articles

ASTM International: ASTM E1049 – 85(2017) – Standard Practices for Cycle Counting in Fatigue Analysis, 2017. a
Bossanyi, E. A.: Individual blade pitch control for load reduction, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 6, 119–128, 2003. a
Bossanyi, E. A.: Further load reductions with individual pitch control, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 8, 481–485, 2005. a
Chen, G. and Wen, J.: Load performance of large-scale rolling bearings with supporting structure in wind turbines, J. Tribol., 134, 041105, https://doi.org/10.1115/1.4007349, 2012. a
Daidié, A., Chaib, Z., and Ghosn, A.: 3D simplified finite elements analysis of load and contact angle in a slewing ball bearing, J. Mech. Design, 130, 082601, https://doi.org/10.1115/1.2918915, 2008. a
Download
Short summary
Blade bearings of wind turbines experience unusual loads compared to bearings in other industrial applications, which adds some difficulty to the application of otherwise well-established calculation methods, like fatigue lifetime. As a result, different methods for such calculations can be found in the literature. This paper compares three approaches of varying complexity and comes to the conclusion that the simplest of the methods is very inaccurate compared to the more complex methods.