Articles | Volume 5, issue 2
https://doi.org/10.5194/wes-5-601-2020
https://doi.org/10.5194/wes-5-601-2020
Research article
 | 
26 May 2020
Research article |  | 26 May 2020

Analysing uncertainties in offshore wind farm power output using measure–correlate–predict methodologies

Michael Denis Mifsud, Tonio Sant, and Robert Nicholas Farrugia

Related subject area

Offshore technology
A framework for simultaneous design of wind turbines and cable layout in offshore wind
Juan-Andrés Pérez-Rúa and Nicolaos Antonio Cutululis
Wind Energ. Sci., 7, 925–942, https://doi.org/10.5194/wes-7-925-2022,https://doi.org/10.5194/wes-7-925-2022, 2022
Short summary
Alignment of scanning lidars in offshore wind farms
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022,https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Damping identification of offshore wind turbines using operational modal analysis: a review
Aemilius A. W. van Vondelen, Sachin T. Navalkar, Alexandros Iliopoulos, Daan C. van der Hoek, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 161–184, https://doi.org/10.5194/wes-7-161-2022,https://doi.org/10.5194/wes-7-161-2022, 2022
Short summary
FAST.Farm load validation for single wake situations at alpha ventus
Matthias Kretschmer, Jason Jonkman, Vasilis Pettas, and Po Wen Cheng
Wind Energ. Sci., 6, 1247–1262, https://doi.org/10.5194/wes-6-1247-2021,https://doi.org/10.5194/wes-6-1247-2021, 2021
Short summary
Exploitation of the far-offshore wind energy resource by fleets of energy ships – Part 2: Updated ship design and cost of energy estimate
Aurélien Babarit, Félix Gorintin, Pierrick de Belizal, Antoine Neau, Giovanni Bordogna, and Jean-Christophe Gilloteaux
Wind Energ. Sci., 6, 1191–1204, https://doi.org/10.5194/wes-6-1191-2021,https://doi.org/10.5194/wes-6-1191-2021, 2021
Short summary

Cited articles

Ainslie, J.: Calculating the Flowfield in the Wake of Turbines, J. Wind Eng. Ind. Aerodyn., 27, 216–224, 1985. 
Alpaydin, E.: Introduction to Machine Learning, 2nd Edn., Massachusetts Institute of Technology, MIT Press, Cambridge, Massachusetts, chap. 9, 185–207, 2010. 
Barthelmie, R., Folkrts, G., Larsen, G., Rados, K., Pryor, S., Frandsen, S., Lange, B., and Schepers, G.: Comparison of Wake Model Sumulations with Offshore Wind Turbine Wake Profiles Measured by Sodar, J. Atmos. Ocean. Technol., 23, 888–901, 2006. 
Bechrakis, D., Deane, J., and MCKeogh, E.: Wind Resource Assessment of an Area using Short-Term Data Correlated to a Long-Term Data-Set, Sol. Energ., 76, 724–32, 2004. 
Bilgili, M., Sahlin, B., and Yasar, A.: Application of Artificial Neural Networks for the Wind Speed Prediction of Target Station Using Artificial Intelligent Methods, Renew. Energ., 32, 2350–2360, 2007. 
Download
Short summary
In offshore wind, it is important to have an accurate wind resource assessment. Measure–correlate–predict (MCP) is a statistical method used in the assessment of the wind resource at a candidate site. Being a statistical method, it is subject to uncertainty, resulting in an uncertainty in the power output from the wind farm. This study involves the use of wind data from the island of Malta and uses a hypothetical wind farm to establish the best MCP methodology for the wind resource assessment.
Altmetrics
Final-revised paper
Preprint