Articles | Volume 7, issue 6
https://doi.org/10.5194/wes-7-2307-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-2307-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Larry K. Berg
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Mithu Debnath
National Wind Technology Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
Georgios Deskos
National Wind Technology Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
Caroline Draxl
National Wind Technology Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
Renewable and Sustainable Energy Institute, Boulder, CO 80309, USA
Virendra P. Ghate
Argonne National Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA
Charlotte B. Hasager
DTU Wind Energy, Technical University of Denmark, Risø Campus,
Roskilde, Denmark
Rao Kotamarthi
Argonne National Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA
Jeffrey D. Mirocha
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Paytsar Muradyan
Argonne National Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA
William J. Pringle
Argonne National Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA
David D. Turner
Global Systems Laboratory, NOAA, Boulder, CO 80305, USA
James M. Wilczak
Physical Sciences Laboratory, NOAA, Boulder, CO 80305, USA
Viewed
Total article views: 7,759 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Feb 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,684 | 2,992 | 83 | 7,759 | 78 | 62 |
- HTML: 4,684
- PDF: 2,992
- XML: 83
- Total: 7,759
- BibTeX: 78
- EndNote: 62
Total article views: 4,338 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 28 Nov 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,199 | 1,077 | 62 | 4,338 | 65 | 56 |
- HTML: 3,199
- PDF: 1,077
- XML: 62
- Total: 4,338
- BibTeX: 65
- EndNote: 56
Total article views: 3,421 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Feb 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,485 | 1,915 | 21 | 3,421 | 13 | 6 |
- HTML: 1,485
- PDF: 1,915
- XML: 21
- Total: 3,421
- BibTeX: 13
- EndNote: 6
Viewed (geographical distribution)
Total article views: 7,759 (including HTML, PDF, and XML)
Thereof 7,334 with geography defined
and 425 with unknown origin.
Total article views: 4,338 (including HTML, PDF, and XML)
Thereof 4,037 with geography defined
and 301 with unknown origin.
Total article views: 3,421 (including HTML, PDF, and XML)
Thereof 3,297 with geography defined
and 124 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
14 citations as recorded by crossref.
- On the interaction of a wind turbine wake with a conventionally neutral atmospheric boundary layer A. Hodgkin et al. 10.1016/j.ijheatfluidflow.2023.109165
- Wind stress modification by offshore wind turbines: A numerical study of wave blocking impacts B. Zhao et al. 10.1016/j.oceaneng.2024.119651
- Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications F. Moghadam & N. Desch 10.3390/en16031499
- Large-eddy simulation study on wave-wake interactions past an offshore wind turbine U. Ciri 10.1088/1742-6596/2767/5/052038
- Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction R. Gandoin & J. Garza 10.5194/wes-9-1727-2024
- Characterizing model uncertainties in simulated coast-to-offshore wind over the northeast U.S. using multi-platform measurements from the TCAP field campaign S. Tai et al. 10.1016/j.renene.2024.122022
- Evaluation of Hub‐Height Wind Forecasts Over the New York Bight T. Myers et al. 10.1002/we.2936
- Boundary layer height above the Great Barrier Reef studied using drone and Mini-Micropulse LiDAR measurements R. Ryan et al. 10.1071/ES24008
- TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows S. Stipa et al. 10.5194/wes-9-297-2024
- Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy S. Haupt et al. 10.5194/wes-8-1251-2023
- Investigation of wind veer characteristics on complex terrain using ground-based lidar U. Tumenbayar & K. Ko 10.14710/ijred.2023.56352
- Effects of Offshore Wind Farms: Environmental and Social Perspectives from Uruguay M. Forastiero et al. 10.3390/su16209057
- Characterizing the Atmospheric Boundary Layer for Offshore Wind Energy Using Synthetic Aperture Radar Imagery J. Stopa et al. 10.1002/we.2933
- Lifetime prediction of turbine blades using global precipitation products from satellites M. Badger et al. 10.5194/wes-7-2497-2022
14 citations as recorded by crossref.
- On the interaction of a wind turbine wake with a conventionally neutral atmospheric boundary layer A. Hodgkin et al. 10.1016/j.ijheatfluidflow.2023.109165
- Wind stress modification by offshore wind turbines: A numerical study of wave blocking impacts B. Zhao et al. 10.1016/j.oceaneng.2024.119651
- Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications F. Moghadam & N. Desch 10.3390/en16031499
- Large-eddy simulation study on wave-wake interactions past an offshore wind turbine U. Ciri 10.1088/1742-6596/2767/5/052038
- Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction R. Gandoin & J. Garza 10.5194/wes-9-1727-2024
- Characterizing model uncertainties in simulated coast-to-offshore wind over the northeast U.S. using multi-platform measurements from the TCAP field campaign S. Tai et al. 10.1016/j.renene.2024.122022
- Evaluation of Hub‐Height Wind Forecasts Over the New York Bight T. Myers et al. 10.1002/we.2936
- Boundary layer height above the Great Barrier Reef studied using drone and Mini-Micropulse LiDAR measurements R. Ryan et al. 10.1071/ES24008
- TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows S. Stipa et al. 10.5194/wes-9-297-2024
- Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy S. Haupt et al. 10.5194/wes-8-1251-2023
- Investigation of wind veer characteristics on complex terrain using ground-based lidar U. Tumenbayar & K. Ko 10.14710/ijred.2023.56352
- Effects of Offshore Wind Farms: Environmental and Social Perspectives from Uruguay M. Forastiero et al. 10.3390/su16209057
- Characterizing the Atmospheric Boundary Layer for Offshore Wind Energy Using Synthetic Aperture Radar Imagery J. Stopa et al. 10.1002/we.2933
- Lifetime prediction of turbine blades using global precipitation products from satellites M. Badger et al. 10.5194/wes-7-2497-2022
Latest update: 13 Dec 2024
Download
- Article
(3971 KB) - Full-text XML
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
This paper provides a review of prominent scientific challenges to characterizing the offshore...
Altmetrics
Final-revised paper
Preprint