Articles | Volume 8, issue 12
https://doi.org/10.5194/wes-8-1771-2023
https://doi.org/10.5194/wes-8-1771-2023
Research article
 | 
30 Nov 2023
Research article |  | 30 Nov 2023

Wake characteristics of a balloon wind turbine and aerodynamic analysis of its balloon using a large eddy simulation and actuator disk model

Aref Ehteshami and Mostafa Varmazyar

Related subject area

Thematic area: Wind technologies | Topic: Airborne technology
Refining the airborne wind energy system power equations with a vortex wake model
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 1639–1650, https://doi.org/10.5194/wes-8-1639-2023,https://doi.org/10.5194/wes-8-1639-2023, 2023
Short summary
Impact of wind profiles on ground-generation airborne wind energy system performance
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023,https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Flight trajectory optimization of Fly-Gen airborne wind energy systems through a harmonic balance method
Filippo Trevisi, Iván Castro-Fernández, Gregorio Pasquinelli, Carlo Emanuele Dionigi Riboldi, and Alessandro Croce
Wind Energ. Sci., 7, 2039–2058, https://doi.org/10.5194/wes-7-2039-2022,https://doi.org/10.5194/wes-7-2039-2022, 2022
Short summary
Scaling effects of fixed-wing ground-generation airborne wind energy systems
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022,https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Parameter analysis of a multi-element airfoil for application to airborne wind energy
Gianluca De Fezza and Sarah Barber
Wind Energ. Sci., 7, 1627–1640, https://doi.org/10.5194/wes-7-1627-2022,https://doi.org/10.5194/wes-7-1627-2022, 2022
Short summary

Cited articles

Ahmadi Asl, H., Kamali Monfared, R., and Rad, M.: Experimental investigation of blade number and design effects for a ducted wind turbine, Renew. Energ., 105, 334–343, https://doi.org/10.1016/j.renene.2016.12.078, 2017. 
Ahrens, U., Diehl, M., and Schmehl, R.: Airborne Wind Energy, 1st edn., edited by: Ahrens, U., Diehl, M., and Schmehl, R., Springer Berlin, Heidelberg, 611 pp., https://doi.org/10.1007/978-3-642-39965-7, 2013. 
Alfonsi, G.: Reynolds-averaged Navier-Stokes equations for turbulence modeling, Appl. Mech. Rev., 62, 1–20, https://doi.org/10.1115/1.3124648, 2009. 
Ali, Q. S. and Kim, M. H.: Unsteady aerodynamic performance analysis of an airborne wind turbine under load varying conditions at high altitude, Energy Convers. Manag., 210, 112696, https://doi.org/10.1016/j.enconman.2020.112696, 2020. 
ANSYS: Quick guide to setting up LES-type simulations, ANSYS Cust. Portal, 50, http://www.tfd.chalmers.se/~lada/comp_turb_model/postscript_files/Quick_Guide_to_Setting_Up_LES_version_1.4_for_Lars.pdf (last access: 23 November 2023), 2016. 
Download
Short summary
In this paper, we numerically studied the wake characteristics and aerodynamics of a balloon wind turbine, an airborne system operating at altitudes of about 400–1000 m. The system can benefit from a stronger and steady wind flow at these altitudes. Results contribute to the wake structure and the magnitude of aerodynamic loads on the balloon in varying wind conditions at high altitudes. Findings are valuable in designing future optimized wind farms and control systems for balloon wind turbines.
Altmetrics
Final-revised paper
Preprint