Articles | Volume 8, issue 3
https://doi.org/10.5194/wes-8-449-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-449-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of eddy viscosity in the wake of a wind turbine
Ryan Scott
Department of Mechanical Engineering, Portland State University, Portland, Oregon, USA
Luis Martínez-Tossas
National Renewable Energy Lab, Golden, Colorado, USA
Juliaan Bossuyt
Department of Mechanical Engineering, Portland State University, Portland, Oregon, USA
Nicholas Hamilton
National Renewable Energy Lab, Golden, Colorado, USA
Raúl B. Cal
CORRESPONDING AUTHOR
Department of Mechanical Engineering, Portland State University, Portland, Oregon, USA
Related authors
No articles found.
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-148, https://doi.org/10.5194/wes-2024-148, 2024
Preprint under review for WES
Short summary
Short summary
This study is the first to use real-world atmospheric measurements to show that large wind plants can increase the height of the planetary boundary layer, the part of the atmosphere near the surface where life takes place. The planetary boundary layer height governs processes like pollutant transport and cloud formation, and is a key parameter for modeling the atmosphere. The results of this study provide important insights into interactions between wind plants and their local environment.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
Raghavendra Krishnamurthy, Rob Newsom, Colleen Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna M. Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-29, https://doi.org/10.5194/wes-2024-29, 2024
Revised manuscript accepted for WES
Short summary
Short summary
The growth of wind farms in the central United States in the last decade has been staggering. This study looked at how wind farms affect the recovery of wind wakes – the disturbed air behind wind turbines. In places like the US Great Plains, phenomena such as low-level jets can form, changing how wind farms work. We studied how wind wakes recover under different weather conditions using real-world data, which is important for making wind energy more efficient and reliable.
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112, https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents an approach to analytically estimate the wake deficit within the near-wake region by modifying the curled wake model. This is done by incorporating a new initial condition at the rotor using an azimuth-dependent Gaussian profile, an adjusted turbulence model in the near-wake region and the far-wake region and an iterative process to determine the velocity field, while considering the relation of the pressure gradient and accounting the conservation of mass.
Kelsey Shaler, Benjamin Anderson, Luis A. Martínez-Tossas, Emmanuel Branlard, and Nick Johnson
Wind Energ. Sci., 8, 383–399, https://doi.org/10.5194/wes-8-383-2023, https://doi.org/10.5194/wes-8-383-2023, 2023
Short summary
Short summary
Free-vortex wake (OLAF) and low-fidelity blade-element momentum (BEM) structural results are compared to high-fidelity simulation results for a flexible downwind turbine for varying inflow conditions. Overall, OLAF results were more consistent than BEM results when compared to SOWFA results under challenging inflow conditions. Differences between OLAF and BEM results were dominated by yaw misalignment angle, with varying shear exponent and turbulence intensity causing more subtle differences.
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022, https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
Short summary
This work introduces the FLOW Estimation and Rose Superposition (FLOWERS) wind turbine wake model. This model analytically integrates the wake over wind directions to provide a time-averaged flow field. This new formulation is used to perform layout optimization. The FLOWERS model provides a smooth flow field over an entire wind plant at fraction of the computational cost of the standard numerical integration approach.
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021, https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021, https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary
Short summary
This paper highlights the secondary effects of wake steering, including yaw-added wake recovery and secondary steering. These effects enhance the value of wake steering especially when applied to a large wind farm. This paper models these secondary effects using an analytical model proposed in the paper. The results of this model are compared with large-eddy simulations for several cases including 2-turbine, 3-turbine, 5-turbine, and 38-turbine cases.
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.
Nicholas Hamilton
Atmos. Meas. Tech., 13, 1019–1032, https://doi.org/10.5194/amt-13-1019-2020, https://doi.org/10.5194/amt-13-1019-2020, 2020
Short summary
Short summary
The identification of atmospheric conditions within a multivariable atmospheric data set is an important step in validating emerging and existing models used to simulate wind plant flows and operational strategies. The total variation approach developed here offers a method founded in tested mathematical metrics and can be used to identify and characterize periods corresponding to quiescent conditions or specific events of interest for study or wind energy development.
Christopher J. Bay, Jennifer King, Paul Fleming, Rafael Mudafort, and Luis A. Martínez-Tossas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-19, https://doi.org/10.5194/wes-2019-19, 2019
Preprint withdrawn
Short summary
Short summary
This work details a new low-fidelity wake model to be used in determining operational strategies for wind turbines. With the additional physics that this model captures, optimizations have found new control strategies that provide greater increases in performance than previously determined, and these performance increases have been confirmed in high-fidelity simulations. As such, this model can be used in the design and optimization of future wind farms and operational schemes.
Luis A. Martínez-Tossas, Jennifer Annoni, Paul A. Fleming, and Matthew J. Churchfield
Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, https://doi.org/10.5194/wes-4-127-2019, 2019
Short summary
Short summary
A new control-oriented model is developed to compute the wake of a wind turbine under yaw. The model uses a simplified version of the Navier–Stokes equation with assumptions. Good agreement is found between the model-proposed and large eddy simulations of a wind turbine in yaw.
Paul Fleming, Jennifer Annoni, Matthew Churchfield, Luis A. Martinez-Tossas, Kenny Gruchalla, Michael Lawson, and Patrick Moriarty
Wind Energ. Sci., 3, 243–255, https://doi.org/10.5194/wes-3-243-2018, https://doi.org/10.5194/wes-3-243-2018, 2018
Short summary
Short summary
This paper investigates the role of flow structures in wind farm control through yaw misalignment. A pair of counter-rotating vortices is shown to be important in deforming the shape of the wake. Further, we demonstrate that the vortex structures created in wake steering can enable a greater change power generation than currently modeled in control-oriented models. We propose that wind farm controllers can be made more effective if designed to take advantage of these effects.
Naseem Ali, Nicholas Hamilton, Dominic DeLucia, and Raúl Bayoán Cal
Wind Energ. Sci., 3, 43–56, https://doi.org/10.5194/wes-3-43-2018, https://doi.org/10.5194/wes-3-43-2018, 2018
Naseem Ali, Nicholas Hamilton, and Raúl Bayáon Cal
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-23, https://doi.org/10.5194/wes-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
The effect of the density of turbines on the wake recovery is important. However, the impact of the tight spacing is still not fully understood. Here, we used proper orthogonal decomposition tool to analyze this impact. Different streamwise and spanwise spacings are chosen to make this work robust. Thus, the power measurements are also applied to investigate the spacing impact.
Cited articles
Annoni, J., Scholbrock, A., Churchfield, M., and Fleming, P.: Evaluating tilt
for wind plants, in: IEEE 2017 American Control Conference (ACC), 24–26 May 2017, Seattle, WA, USA, 717–722, https://doi.org/10.23919/ACC.2017.7963037, 2017. a
Bai, K., Meneveau, C., and Katz, J.: Near-wake turbulent flow structure and
mixing length downstream of a fractal tree, Bound.-Lay. Meteorol., 143,
285–308, 2012. a
Bastankhah, M., Welch, B. L., Martínez-Tossas, L. A., King, J., and Fleming, P.: Analytical solution for the cumulative wake of wind turbines in
wind farms, J. Fluid Mech., 911, A53, https://doi.org/10.1017/jfm.2020.1037, 2021. a, b
Bastankhah, M., Shapiro, C. R., Shamsoddin, S., Gayme, D. F., and Meneveau, C.: A vortex sheet based analytical model of the curled wake behind yawed wind turbines, J. Fluid Mech., 933, A2, https://doi.org/10.1017/jfm.2021.1010, 2022. a, b
Baungaard, M., Wallin, S., van der Laan, M. P., and Kelly, M.: Wind turbine wake simulation with explicit algebraic Reynolds stress modeling, Wind Energ. Sci., 7, 1975–2002, https://doi.org/10.5194/wes-7-1975-2022, 2022. a
Bay, C. J., Fleming, P., Doekemeijer, B., King, J., Churchfield, M., and Mudafort, R.: Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2022-17, in review, 2022. a
Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S., and Meneveau, C.:
Experimental study of the horizontally averaged flow structure in a model
wind-turbine array boundary layer, J. Renew. Sustain. Energ., 2, 013106, https://doi.org/10.1063/1.3289735, 2010. a
Churchfield, M., Lee, S., Moriarty, P., Martinez, L., Leonardi, S.,
Vijayakumar, G., and Brasseur, J.: A large-eddy simulation of wind-plant
aerodynamics, in: 50th AIAA aerospace sciences meeting including the new
horizons forum and aerospace exposition, 9–12 January 2012, Houston, TX, USA, p. 537, https://doi.org/10.2514/6.2012-537, 2012. a, b
Fleming, P. A., Gebraad, P. M., Lee, S., van Wingerden, J.-W., Johnson, K.,
Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Evaluating
techniques for redirecting turbine wakes using SOWFA, Renew. Energy, 70,
211–218, 2014. a
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter,
G. E., Abbas, N. J., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G. N., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine, Tech. rep., NREL – National Renewable Energy Lab., Golden, CO, USA, https://doi.org/10.2172/1603478, 2020. a
Hamilton, N. and Cal, R. B.: Anisotropy of the Reynolds stress tensor in the
wakes of wind turbine arrays in Cartesian arrangements with counter-rotating
rotors, Phys. Fluids, 27, 015102, https://doi.org/10.1063/1.4903968, 2015. a
Hamilton, N., Bay, C. J., Fleming, P., King, J., and Martínez-Tossas, L. A.: Comparison of modular analytical wake models to the Lillgrund wind plant, J. Renew. Sustain. Energ., 12, 053311, https://doi.org/10.1063/5.0018695, 2020. a
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J., and
Meneveau, C.: Wake structure in actuator disk models of wind turbines in yaw
under uniform inflow conditions, J. Renew. Sustain. Energ., 8, 043301, https://doi.org/10.1063/1.4955091, 2016. a, b
Kadum, H., Rockel, S., Hölling, M., Peinke, J., and Cal, R. B.: Wind
turbine wake intermittency dependence on turbulence intensity and pitch
motion, J. Renew. Sustain. Energ., 11, 053302, https://doi.org/10.1063/1.5097829, 2019. a
Kadum, H., Rockel, S., Viggiano, B., Dib, T., Hölling, M., Chevillard, L., and Cal, R. B.: Assessing intermittency characteristics via cumulant analysis of floating wind turbines wakes, J. Renew. Sustain. Energ., 13, 013302, https://doi.org/10.1063/5.0022699, 2021. a
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019. a, b, c, d
Martínez-Tossas, L. A., King, J., Quon, E., Bay, C. J., Mudafort, R., Hamilton, N., Howland, M. F., and Fleming, P. A.: The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows, Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, 2021. a, b, c
Meyers, J., Bottasso, C., Dykes, K., Fleming, P., Gebraad, P., Giebel, G., Göçmen, T., and van Wingerden, J.-W.: Wind farm flow control: prospects and challenges, Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, 2022. a, b
NREL: FLORIS, Version 3.1, GitHub [code], https://github.com/NREL/floris (last access: 28 March 2023), 2022a. a
NREL: OpenFast, Version 3.1, GitHub [code], https://github.com/OpenFAST/openfast (last access: 28 March 2023), 2022b. a
NREL: SOWFA, Version 6.0, GitHub [code], https://github.com/NREL/SOWFA-6 (last access: 28 March 2023), 2022c. a
Rockel, S., Camp, E., Schmidt, J., Peinke, J., Cal, R. B., and Hölling, M.: Experimental study on influence of pitch motion on the wake of a floating
wind turbine model, Energies, 7, 1954–1985, 2014. a
Schmelzer, M., Dwight, R. P., and Cinnella, P.: Discovery of algebraic
Reynolds-stress models using sparse symbolic regression, Flow Turbul. Combust., 104, 579–603, 2020. a
Scott, R., Bossuyt, J., and Cal, R. B.: Characterizing tilt effects on wind
plants, J. Renew. Sustain. Energ., 12, 043302, https://doi.org/10.1063/5.0009853, 2020. a, b, c, d
Shapiro, C. R., Gayme, D. F., and Meneveau, C.: Generation and decay of
counter-rotating vortices downstream of yawed wind turbines in the atmospheric boundary layer, J. Fluid Mech., 903, R2, https://doi.org/10.1017/jfm.2020.717, 2020. a
van der Laan, M. and Andersen, S.: The turbulence scales of a wind turbine
wake: A revisit of extended k–ϵ models, J. Phys.: Conf. Ser., 1037, 072001, https://doi.org/10.1088/1742-6596/1037/7/072001, 2018. a
van der Laan, M. P., Sørensen, N. N., Réthoré, P.-E., Mann, J.,
Kelly, M. C., Troldborg, N., Schepers, J. G., and Machefaux, E.: An improved
k–ϵ model applied to a wind turbine wake in atmospheric turbulence, Wind Energy, 18, 889–907, 2015. a
van der Laan, M. P., Baungaard, M., and Kelly, M.: Brief communication: A clarification of wake recovery mechanisms, Wind Energ. Sci., 8, 247–254, https://doi.org/10.5194/wes-8-247-2023, 2023. a
Veers, P., Bottasso, C., Manuel, L., Naughton, J., Pao, L., Paquette, J., Robertson, A., Robinson, M., Ananthan, S., Barlas, A., Bianchini, A., Bredmose, H., Horcas, S. G., Keller, J., Madsen, H. A., Manwell, J., Moriarty, P., Nolet, S., and Rinker, J.: Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2022-32, in review, 2022. a
Zong, H. and Porté-Agel, F.: A point vortex transportation model for yawed wind turbine wakes, J. Fluid Mech., 890, A8, https://doi.org/10.1017/jfm.2020.123, 2020. a
Short summary
In this work we examine the relationship between wind speed and turbulent stresses within a wind turbine wake. This relationship changes further from the turbine as the driving physical phenomena vary throughout the wake. We propose a model for this process and test the effectiveness of our model against existing formulations. Our approach increases the accuracy of wind speed predictions, which will lead to better estimates of wind plant performance and promote more efficient wind plant design.
In this work we examine the relationship between wind speed and turbulent stresses within a wind...
Altmetrics
Final-revised paper
Preprint