Articles | Volume 8, issue 4
https://doi.org/10.5194/wes-8-639-2023
https://doi.org/10.5194/wes-8-639-2023
Research article
 | 
28 Apr 2023
Research article |  | 28 Apr 2023

A new base of wind turbine noise measurement data and its application for a systematic validation of sound propagation models

Susanne Könecke, Jasmin Hörmeyer, Tobias Bohne, and Raimund Rolfes

Related authors

Dynamic displacement measurement of a wind turbine tower using accelerometers: tilt error compensation and validation
Clemens Jonscher, Paula Helming, David Märtins, Andreas Fischer, David Bonilla, Benedikt Hofmeister, Tanja Grießmann, and Raimund Rolfes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-123,https://doi.org/10.5194/wes-2023-123, 2023
Revised manuscript under review for WES
Short summary
Probabilistic temporal extrapolation of fatigue damage of offshore wind turbine substructures based on strain measurements
Clemens Hübler and Raimund Rolfes
Wind Energ. Sci., 7, 1919–1940, https://doi.org/10.5194/wes-7-1919-2022,https://doi.org/10.5194/wes-7-1919-2022, 2022
Short summary
Very low frequency IEPE accelerometer calibration and application to a wind energy structure
Clemens Jonscher, Benedikt Hofmeister, Tanja Grießmann, and Raimund Rolfes
Wind Energ. Sci., 7, 1053–1067, https://doi.org/10.5194/wes-7-1053-2022,https://doi.org/10.5194/wes-7-1053-2022, 2022
Short summary
A comparison study on jacket substructures for offshore wind turbines based on optimization
Jan Häfele, Cristian G. Gebhardt, and Raimund Rolfes
Wind Energ. Sci., 4, 23–40, https://doi.org/10.5194/wes-4-23-2019,https://doi.org/10.5194/wes-4-23-2019, 2019
Short summary
A systematic approach to offshore wind turbine jacket predesign and optimization: geometry, cost, and surrogate structural code check models
Jan Häfele, Rick R. Damiani, Ryan N. King, Cristian G. Gebhardt, and Raimund Rolfes
Wind Energ. Sci., 3, 553–572, https://doi.org/10.5194/wes-3-553-2018,https://doi.org/10.5194/wes-3-553-2018, 2018
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Aeroacoustics
Impact of a Two-Dimensional Steep Hill on Wind Turbine Noise Propagation
Jules Colas, Ariane Emmanuelli, Didier Dragna, Philippe Blanc-Benon, Benjamin Cotté, and Richard J. A. M. Stevens
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-36,https://doi.org/10.5194/wes-2024-36, 2024
Revised manuscript accepted for WES
Short summary
Numerical model for noise reduction of small vertical-axis wind turbines
Wen-Yu Wang and Yuh-Ming Ferng
Wind Energ. Sci., 9, 651–664, https://doi.org/10.5194/wes-9-651-2024,https://doi.org/10.5194/wes-9-651-2024, 2024
Short summary

Cited articles

Argyle, P. and Watson, S.: Assessing the dependence of surface layer atmospheric stability on measurement height at offshore locations, J. Wind Eng. Ind. Aerod., 131, 88–99, https://doi.org/10.1016/j.jweia.2014.06.002, 2014. a
Attenborough, K., Taherzadeh, S., Bass, H. E., Di, X., Raspet, R., Becker, G. R., Güdesen, A., Chrestman, A., Daigle, G. A., L'Espérance, A., Gabillet, Y., Gilbert, K. E., Li, Y. L., White, M. J., Naz, P., Noble, J. M., and van Hoof, H. A. J. M.: Benchmark cases for outdoor sound propagation models, J. Acoust. Soc. Am., 97, 173–191, https://doi.org/10.1121/1.412302, 1995. a
Barlas, E., Zhu, W. J., Shen, W. Z., Dag, K. O., and Moriarty, P.: Consistent modelling of wind turbine noise propagation from source to receiver, J. Acoust. Soc. Am., 142, 3297, https://doi.org/10.1121/1.5012747, 2017a. a, b, c
Barlas, E., Zhu, W. J., Shen, W. Z., Kelly, M., and Andersen, S. J.: Effects of wind turbine wake on atmospheric sound propagation, Appl. Acoust., 122, 51–61, https://doi.org/10.1016/j.apacoust.2017.02.010, 2017b. a, b, c
Bass, H. E., Sutherland, L. C., Zuckerwar, A. J., Blackstock, D. T., and Hester, D. M.: Atmospheric absorption of sound: Further developments, J. Acoust. Soc. Am., 97, 680–683, 1995. a, b
Download
Short summary
Extensive measurements in the area of wind turbines were performed in order to validate a sound propagation model. The measurements were carried out under various environmental conditions and included the acquisition of acoustical, meteorological and wind turbine performance data. By processing and analysing the measurement data, validation cases and input parameters for the propagation model were derived. Comparing measured and modelled propagation losses, generally good agreement is observed.
Altmetrics
Final-revised paper
Preprint