Articles | Volume 8, issue 4
https://doi.org/10.5194/wes-8-639-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-639-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new base of wind turbine noise measurement data and its application for a systematic validation of sound propagation models
Susanne Könecke
CORRESPONDING AUTHOR
Institute of Structural Analysis/ForWind, Leibniz University Hannover, Appelstraße 9A, 30167 Hanover, Germany
previously published under the name Susanne Martens
Jasmin Hörmeyer
Institute of Structural Analysis/ForWind, Leibniz University Hannover, Appelstraße 9A, 30167 Hanover, Germany
Tobias Bohne
Institute of Structural Analysis/ForWind, Leibniz University Hannover, Appelstraße 9A, 30167 Hanover, Germany
Raimund Rolfes
Institute of Structural Analysis/ForWind, Leibniz University Hannover, Appelstraße 9A, 30167 Hanover, Germany
Related authors
No articles found.
Marlene Wolniak, Jasper Ragnitz, Clemens Jonscher, Benedikt Hofmeister, Helge Jauken, Clemens Hübler, and Raimund Rolfes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-219, https://doi.org/10.5194/wes-2025-219, 2025
Preprint under review for WES
Short summary
Short summary
This study investigates how FE models of different fidelity affect the damage identification in a 31 m wind turbine rotor blade tested under edgewise fatigue loading. Different design variable configurations are compared, whereby the FE model updating is based on modal parameters identified from measured vibration data.
Franziska Schmidt, Clemens Hübler, and Raimund Rolfes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-83, https://doi.org/10.5194/wes-2025-83, 2025
Revised manuscript accepted for WES
Short summary
Short summary
In this work, for the first time, a Kriging meta-model is detailed analysed to replace the simulation model of an idling offshore wind turbine. It becomes clear that the findings regarding meta-modelling of the idling wind turbine are generally similar to the findings regarding meta-modelling of the same wind turbine in operation. Only for the approximation of the rotor blade root bending moments, two additional input parameters have to be included compared to the same wind turbine in operation.
Clemens Jonscher, Paula Helming, David Märtins, Andreas Fischer, David Bonilla, Benedikt Hofmeister, Tanja Grießmann, and Raimund Rolfes
Wind Energ. Sci., 10, 193–205, https://doi.org/10.5194/wes-10-193-2025, https://doi.org/10.5194/wes-10-193-2025, 2025
Short summary
Short summary
This study investigates dynamic displacement estimation using double-time-integrated acceleration signals for future application in load monitoring based on accelerometers. To estimate displacements without amplitude distortion, a tilt error compensation method for low-frequency vibrations of tower structures using the static bending line without the need for additional sensors is presented. The method is validated using a full-scale onshore wind turbine tower and a terrestrial laser scanner.
Clemens Hübler and Raimund Rolfes
Wind Energ. Sci., 7, 1919–1940, https://doi.org/10.5194/wes-7-1919-2022, https://doi.org/10.5194/wes-7-1919-2022, 2022
Short summary
Short summary
Offshore wind turbines are beginning to reach their design lifetimes. Hence, lifetime extensions are becoming relevant. To make well-founded decisions on possible lifetime extensions, fatigue damage predictions are required. Measurement-based assessments instead of simulation-based analyses have rarely been conducted so far, since data are limited. Therefore, this work focuses on the temporal extrapolation of measurement data. It is shown that fatigue damage can be extrapolated accurately.
Clemens Jonscher, Benedikt Hofmeister, Tanja Grießmann, and Raimund Rolfes
Wind Energ. Sci., 7, 1053–1067, https://doi.org/10.5194/wes-7-1053-2022, https://doi.org/10.5194/wes-7-1053-2022, 2022
Short summary
Short summary
This work presents a method to use low-noise IEPE sensors in the low-frequency range down to 0.05 Hz. In order to achieve phase and amplitude accuracy with this type of sensor in the low-frequency range, a new calibration procedure for this frequency range was developed. The calibration enables the use of the low-noise IEPE sensors for large structures, such as wind turbines. The calibrated sensors can be used for wind turbine monitoring, such as fatigue monitoring.
Cited articles
Argyle, P. and Watson, S.: Assessing the dependence of surface layer
atmospheric stability on measurement height at offshore locations, J.
Wind Eng. Ind. Aerod., 131, 88–99,
https://doi.org/10.1016/j.jweia.2014.06.002, 2014. a
Attenborough, K., Taherzadeh, S., Bass, H. E., Di, X., Raspet, R., Becker,
G. R., Güdesen, A., Chrestman, A., Daigle, G. A., L'Espérance, A.,
Gabillet, Y., Gilbert, K. E., Li, Y. L., White, M. J., Naz, P., Noble, J. M.,
and van Hoof, H. A. J. M.: Benchmark cases for outdoor sound propagation
models, J. Acoust. Soc. Am., 97, 173–191,
https://doi.org/10.1121/1.412302, 1995. a
Barlas, E., Zhu, W. J., Shen, W. Z., Dag, K. O., and Moriarty, P.: Consistent
modelling of wind turbine noise propagation from source to receiver,
J. Acoust. Soc. Am., 142, 3297,
https://doi.org/10.1121/1.5012747, 2017a. a, b, c
Barlas, E., Zhu, W. J., Shen, W. Z., Kelly, M., and Andersen, S. J.: Effects of
wind turbine wake on atmospheric sound propagation, Appl. Acoust., 122,
51–61, https://doi.org/10.1016/j.apacoust.2017.02.010, 2017b. a, b, c
Bérengier, M. C., Gauvreau, B., Blanc-Benon, P., and Juvé, D.: Outdoor
Sound Propagation: A Short Review on Analytical and Numerical Approaches,
Acta Acust. United Ac., 980–991, 2003. a
Bolin, K. and Boué, M.: Long range sound propagation over a seasurface, J. Acoust. Soc. Am., 126, 2191–2197, 2009. a
Conrady, K., Sjöblom, A., and Larsson, C.: Impact of snow on sound
propagating from wind turbines, Wind Energy, 21, 1282–1295,
https://doi.org/10.1002/we.2254, 2018. a
Cotté, B.: Extended source models for wind turbine noise propagation, J. Acoust. Soc. Am., 145, 1363,
https://doi.org/10.1121/1.5093307, 2019. a, b, c
Delany, M. E. and Bazley, E. N.: Acoustical properties of fibrous absorbent
materials, Appl. Acoust., 3, 105–116, 1970. a
DK-BEK513: Bekendtgørelse om støj fra vindmøller,
https://www.retsinformation.dk/Forms/R0710.aspx?id=206666 (last access: 26 April 2023),
2019. a
Ecotière, D.: Can we really predict wind turbine noise with only one pointsource?, in: Proceedings of the 6th International Meeting on Wind Turbine Noise, Glasgow, Scotland, 20–23 April 2015, ISBN 9781510806702, 2015. a
Golan, J.: The Moore-Penrose Pseudoinverse, in: Foundations of Linear Algebra,
vol. 11, Springer, Dordrecht, https://doi.org/10.1007/978-94-015-8502-6_16, 1995. a
Heutschi, K., Pieren, R., Müller, M., Manyoky, M., Hayek, U., and
Eggenschwiler, K.: Auralization of Wind Turbine Noise: Propagation Filtering
and Vegetation Noise Synthesis, Acta Acust. United Ac., 100,
13–24, 2014. a
IEC 61400-12: Wind turbines: Acoustic noise measurement techniques,
International standard, International Electrotechnical Commission, ed. 3.0, Geneva, Switzerland: IEC, ISBN 978-2-8322-5826-2, 2012. a
ISO 9613-2: Acoustics – Attenuation of sound during propagation outdoors
– Part 2: General method of calculation, International standard,
International standard, ed. 1, Geneva, Switzerland: ISO, https://doi.org/10.31030/8139606, 1996. a, b, c
Kaliski, K. and Wilson, K. D.: Improving predictions of wind turbine noiseusing PE modeling, in: Proceeding of NOISE-CON, Portland, Oregon, 25–27 July 2011, ISBN 9781618391629, 2011. a
Könecke, S., Hörmeyer, J., Bohne, T. and Rolfes, R.: Dataset: Wind Turbine Sound Propagation Data for the Validation of Models, Leibniz Universtität Hannover [data set], https://doi.org/10.25835/0012136, 2021. a
Larsson, C. and Öhlund, O.: Wind turbine sound – metric and guidelines,
Proceedings of the 43rd International Congress on Noise Control Engineering, Melbourne, Australia, 16–19 November 2014,
ISBN 9781634398091, 2014. a
Lee, J. and Zhao, F.: GWEC: Global Wind Report 2021, Report, Global Wind Energy Council, Brussels, Belgium, 80 pp., https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf
(last access: 27 April 2023), 2021. a
Lee, S., Lee, D., and Honhoff, S.: Prediction of far-field wind turbine noise
propagation with parabolic equation, J. Acoust. Soc.
Am., 140, 767, https://doi.org/10.1121/1.4958996, 2016. a, b, c, d
Martens, S., Boas, M., Bohne, T., and Rolfes, R.: Towards the use of secondary
windscreens to improve wind turbine sound measurements, in: Proceedings of
15th EAWE PhD Seminar on Wind Energy, Nantes, France, 29–31 October 2019, 2019. a
Martens, S., Bohne, T., and Rolfes, R.: An evaluation method for extensive wind
turbine sound measurement data and its application, Proceedings of Meetings
on Acoustics, Acoustical Society of America, 41, 040001,
https://doi.org/10.1121/2.0001326, 2020. a, b
Miki, Y.: Acoustical properties of porous materials – Modifications of
Delany-Bazley models, Journal of the Acoustical Society of Japan, 11, 19–24, 1990. a
Nyborg, C. M., Fischer, A., Thysell, E., Feng, J., Søndergaard, L. S.,
Sørensen, T., Hansen, T. R., Hansen, K. S., and Bertagnolio, F.: Propagation
of wind turbine noise: measurements and model evaluation, J. Phys.-Conf. Ser., 2265, 032041,
https://doi.org/10.1088/1742-6596/2265/3/032041, 2022. a, b, c, d, e, f
Oerlemans, S., Sijtsma, P., and Méndez López, B.: Location and quantification
of noise sources on a wind turbine, J. Sound Vib., 299, 869–883, 2007. a
Plovsing, B.: Proposal for Nordtest Methods: Nord2000 – Prediction of Outdoor Sound Propagation, Report, Delta (Danish Electronics, Light & Acoustics), Horsholm, Denmark, 177 pp., https://forcetechnology.com/-/media/force-technology-media/pdf-files/projects/nord2000/nord2000-nordtestproposal-rev4.pdf
(last access: 27 April 2023), 2014. a, b
Plovsing, B. and Kragh, J.: Nord2000. Comprehensive Outdoor Sound Propagation Model. Part 1: Propagation in an Atmosphere without Significant Refraction, Report, Delta (Danish Electronics, Light & Acoustics), Kgs. Lyngby, Denmark, 127 pp., http://www.magasbakony.hu/Val/Nord2000_homogeneous_atmosphere_Part_1.pdf
(last access: 27 April 2023),
2001. a, b
Prospathopoulos, J. M. and Voutsinas, S. G.: Noise propagation issues in wind
energy applications, J. Sol. Energ.-T. ASME, 127, 234–241, https://doi.org/10.1121/1.4958996, 2005. a
Shen, W. Z., Sessarego, M., Cao, J., Nyborg, C. M., Hansen, K. S., Bertagnolio,
F., Madsen, H. A., Hansen, P., Vignaroli, A., and Sørensen, T.: Validation
of noise propagation models against detailed flow and acoustic measurements,
J. Phys.-Conf. Ser., 1618, 052023,
https://doi.org/10.1088/1742-6596/1618/5/052023, 2020. a, b
Søndergaard, B. and Plovsing, B.: Report of PSO-07 F&U project no. 7389 – Noise and energy optimization of wind farms: Validation
of the Nord2000 propagation model for use on wind turbine noise, Report, Delta (Danish Electronics, Light & Acoustics), Horsholm, Denmark, 53 pp., https://forcetechnology.com/-/media/force-technology-media/pdf-files/projects/nord2000/validation-of-the-nord2000-propagation-model-for-use-on-wind-turbine-noise.pdf
(last access: 27 April 2023), 2009. a
van den Berg, G. P.: Effects of the wind profile at night on wind turbine
sound, J. Sound Vib., 277, 955–970,
https://doi.org/10.1016/j.jsv.2003.09.050, 2004. a
West, M., Gilbert, K., and Sack, R. A.: A tutorial on the parabolic equation
(PE) model used for long range sound propagation in the atmosphere, Appl.
Acoust., 37, 31–49, https://doi.org/10.1016/0003-682X(92)90009-H, 1992.
a
Zhu, W. J., Shen, W. Z., Barlas, E., Bertagnolio, F., and Sørensen, J. N.:
Wind turbine noise generation and propagation modeling at DTU Wind Energy: A
review, Renewable and Sustainable Energy Reviews, 88, 133–150,
https://doi.org/10.1016/j.rser.2018.02.029, 2018. a
Short summary
Extensive measurements in the area of wind turbines were performed in order to validate a sound propagation model. The measurements were carried out under various environmental conditions and included the acquisition of acoustical, meteorological and wind turbine performance data. By processing and analysing the measurement data, validation cases and input parameters for the propagation model were derived. Comparing measured and modelled propagation losses, generally good agreement is observed.
Extensive measurements in the area of wind turbines were performed in order to validate a sound...
Altmetrics
Final-revised paper
Preprint