Articles | Volume 9, issue 10
https://doi.org/10.5194/wes-9-1869-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-1869-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of a two-dimensional steep hill on wind turbine noise propagation
Jules Colas
CORRESPONDING AUTHOR
École Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130, Écully, France
Ariane Emmanuelli
École Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130, Écully, France
Didier Dragna
École Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130, Écully, France
Philippe Blanc-Benon
École Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130, Écully, France
Benjamin Cotté
Institute of Mechanical Sciences and Industrial Applications (IMSIA), ENSTA Paris, CNRS, CEA, EDF, Institut Polytechnique de Paris, Palaiseau, France
Richard J. A. M. Stevens
Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Related authors
No articles found.
William C. Radünz, Jens H. Kasper, Richard J. A. M. Stevens, and Julie K. Lundquist
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-147, https://doi.org/10.5194/wes-2025-147, 2025
Preprint under review for WES
Short summary
Short summary
Wind farms extract energy from the wind, creating slower, more turbulent flows that can affect other farms downstream. Using high-fidelity simulations for comparison, we find that models using coarser resolution to represent wind farms may underestimate how quickly the wind recovers. This appears to result from missing sharp wind changes and losing turbulence too quickly. Improving these aspects can help better predict wind energy production over long distances.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Preprint under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Davide Selvatici and Richard J. A. M. Stevens
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-60, https://doi.org/10.5194/wes-2024-60, 2024
Manuscript not accepted for further review
Short summary
Short summary
The Actuator Line Method is to date one of the most adopted models for wind turbines in numerical simulations, yet it is known to overestimate the loading at the blade tips. We developed an extremely efficient correction methodology that is able to retrieve the loading distribution of Blade Element Method with tip correction independently on the turbine adopted, or on the chosen inflow velocity, making it possible to be used for simulations of wind farms.
Cited articles
Amiet, R.: Noise due to turbulent flow past a trailing edge, J. Sound Vib., 47, 387–393, https://doi.org/10.1016/0022-460X(76)90948-2, 1976. a
Attenborough, K., Bashir, I., and Taherzadeh, S.: Outdoor ground impedance models, J. Acoust. Soc. Am., 129, 2806–2819, https://doi.org/10.1121/1.3569740, 2011. a
Barlas, E., Zhu, W. J., Shen, W. Z., Dag, K. O., and Moriarty, P.: Consistent modelling of wind turbine noise propagation from source to receiver, J. Acoust. Soc. Am., 142, 3297–3310, https://doi.org/10.1121/1.5012747, 2017a. a
Barlas, E., Wu, K. L., Zhu, W. J., Porté-Agel, F., and Shen, W. Z.: Variability of wind turbine noise over a diurnal cycle, Renew. Energ., 126, 791–800, https://doi.org/10.1016/j.renene.2018.03.086, 2018. a, b, c
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Berg, J., Mann, J., Bechmann, A., Courtney, M. S., and Jørgensen, H. E.: The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill, Bound.-Lay. Meteorol., 141, 219, https://doi.org/10.1007/s10546-011-9636-y, 2011. a
Berland, J., Bogey, C., and Bailly, C.: Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm, Comput. Fluids, 35, 1459–1463, https://doi.org/10.1016/j.compfluid.2005.04.003, 2006. a
Bogey, C. and Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations, J. Comput Phys., 194, 194–214, https://doi.org/10.1016/j.jcp.2003.09.003, 2004. a
Bresciani, A. P. C., Maillard, J., and Finez, A.: Wind farm noise prediction and auralization, Acta Acust., 8, 15, https://doi.org/10.1051/aacus/2024007, 2024. a
Candel, S. M.: Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics, J. Fluid Mech., 83, 465–493, https://doi.org/10.1017/S0022112077001293, 1977. a
Cao, J., Zhu, W., Shen, W., and Sun, Z.: Wind farm layout optimization with special attention on noise radiation, J. Phys. Conf. Ser., 1618, 042022, https://doi.org/10.1088/1742-6596/1618/4/042022, 2020. a
Colas, J., Emmanuelli, A., Dragna, D., Stevens, R., and Blanc-Benon, P.: Effect of a 2D Hill on the Propagation of Wind Turbine Noise, in: 28th AIAACEAS Aeroacoustics 2022 Conf., American Institute of Aeronautics and Astronautics, Southampton, UK, 14–17 June 2022, ISBN 978-1-62410-664-4, https://doi.org/10.2514/6.2022-2923, 2022. a
Colas, J., Emmanuelli, A., Dragna, D., Blanc-Benon, P., Cotté, B., and J. A. M. Stevens, R.: Wind turbine sound propagation: Comparison of a linearized Euler equations model with parabolic equation methods, J. Acoust. Soc. Am., 154, 1413–1426, https://doi.org/10.1121/10.0020834, 2023. a, b, c, d, e, f, g
Cosnefroy, M.: Propagation of impulsive sounds in the atmosphere: numerical simulations and comparison with experiments, PhD Thesis, Acoustic, École Centrale de Lyon, https://cnrs.hal.science/tel-02418454/ (last access: 27 September 2024), 2019. a
Cotté, B.: Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation, J. Sound Vib., 422, 343–357, https://doi.org/10.1016/j.jsv.2018.02.026, 2018. a
Elsen, K. M. and Schady, A.: Influence of meteorological conditions on sound propagation of a wind turbine in complex terrain, Proceedings of Meetings on Acoustics, 41, 032001, https://doi.org/10.1121/2.0001351, 2021. a
Emmanuelli, A., Dragna, D., Ollivier, S., and Blanc-Benon, P.: Characterization of topographic effects on sonic boom reflection by resolution of the Euler equations, J. Acoust. Soc. Am., 149, 2437–2450, https://doi.org/10.1121/10.0003816, 2021. a
Gadde, S. N. and Stevens, R. J. A. M.: Effect of Coriolis force on a wind farm wake, J. Phys. Conf. Ser., 1256, 012026, https://doi.org/10.1088/1742-6596/1256/1/012026, 2019. a
Gadde, S. N., Stieren, A., and Stevens, R. J. A. M.: Large-Eddy Simulations of Stratified Atmospheric Boundary Layers: Comparison of Different Subgrid Models, Bound.-Lay. Meteorol., 178, 363–382, https://doi.org/10.1007/s10546-020-00570-5, 2021. a
Gal-Chen, T. and Somerville, R. C. J.: On the use of a coordinate transformation for the solution of the Navier-Stokes equations, J. Comput. Phys., 17, 209–228, https://doi.org/10.1016/0021-9991(75)90037-6, 1975. a
Gaßner, L., Blumendeller, E., Müller, F. J., Wigger, M., Rettenmeier, A., Cheng, P. W., Hübner, G., Ritter, J., and Pohl, J.: Joint analysis of resident complaints, meteorological, acoustic, and ground motion data to establish a robust annoyance evaluation of wind turbine emissions, Renew. Energ., 188, 1072–1093, https://doi.org/10.1016/j.renene.2022.02.081, 2022. a
Hansen, K. L., Nguyen, P., Zajamšek, B., Catcheside, P., and Hansen, C. H.: Prevalence of wind farm amplitude modulation at long-range residential locations, J. Sound Vib., 455, 136–149, https://doi.org/10.1016/j.jsv.2019.05.008, 2019. a, b
Heimann, D. and Englberger, A.: 3D-simulation of sound propagation through the wake of a wind turbine: Impact of the diurnal variability, Appl. Acoust., 141, 393–402, https://doi.org/10.1016/j.apacoust.2018.06.005, 2018. a, b, c, d
Heimann, D., Käsler, Y., and Gross, G.: The wake of a wind turbine and its influence on sound propagation, Meteorol. Z., 20, 449–460, https://doi.org/10.1127/0941-2948/2011/0273, 2011. a, b
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Tech. Rep. NREL/TP-500-38060, National Renewable Energy Lab. (NREL), Golden, CO (United States), 947422, https://doi.org/10.2172/947422, 2009. a, b
Könecke, S., Hörmeyer, J., Bohne, T., and Rolfes, R.: A new base of wind turbine noise measurement data and its application for a systematic validation of sound propagation models, Wind Energ. Sci., 8, 639–659, https://doi.org/10.5194/wes-8-639-2023, 2023. a
Lee, S., Lee, D., and Honhoff, S.: Prediction of far-field wind turbine noise propagation with parabolic equation, J. Acoust. Soc. Am., 140, 767–778, https://doi.org/10.1121/1.4958996, 2016. a
Liu, L. and Stevens, R. J. A. M.: Effects of Two-Dimensional Steep Hills on the Performance of Wind Turbines and Wind Farms, Bound.-Lay. Meteorol., 176, 251–269, https://doi.org/10.1007/s10546-020-00522-z, 2020. a, b, c
Mascarenhas, D., Cotté, B., and Doaré, O.: Synthesis of wind turbine trailing edge noise in free field, JASA Express Letters, 2, 033601, https://doi.org/10.1121/10.0009658, 2022. a
Mascarenhas, D., Cotté, B., and Doaré, O.: Propagation effects in the synthesis of wind turbine aerodynamic noise, Acta Acust., 7, 23, https://doi.org/10.1051/aacus/2023018, 2023. a, b
Muñoz-Esparza, D., Sharman, R. D., and Lundquist, J. K.: Turbulence Dissipation Rate in the Atmospheric Boundary Layer: Observations and WRF Mesoscale Modeling during the XPIA Field Campaign, Mon. Weather Rev., 146, 351–371, https://doi.org/10.1175/MWR-D-17-0186.1, 2018. a
Nyborg, C. M., Bolin, K., Karasalo, I., and Fischer, A.: An inter-model comparison of parabolic equation methods for sound propagation from wind turbines, J. Acoust. Soc. Am., 154, 1299–1314, https://doi.org/10.1121/10.0020562, 2023. a, b
Oerlemans, S., Sijtsma, P., and Méndez López, B.: Location and quantification of noise sources on a wind turbine, J. Sound Vib., 299, 869–883, https://doi.org/10.1016/j.jsv.2006.07.032, 2007. a
Ostashev, V. E., Wilson, D. K., Liu, L., Aldridge, D. F., Symons, N. P., and Marlin, D.: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, J. Acoust. Soc. Am., 117, 503–517, https://doi.org/10.1121/1.1841531, 2005. a
Petropoulos, P.: Reflectionless Sponge Layers as Absorbing Boundary Conditions for the Numerical Solution of Maxwell Equations in Rectangular, Cylindrical, and Spherical Coordinates, Siam J. Appl. Math., 60, 1037–1058, https://doi.org/10.1137/S0036139998334688, 2000. a
Prospathopoulos, J. M. and Voutsinas, S. G.: Application of a ray theory model to the prediction of noise emissions from isolated wind turbines and wind parks, Wind Energy, 10, 103–119, https://doi.org/10.1002/we.211, 2007. a
Sack, R. A. and West, M.: A parabolic equation for sound propagation in two dimensions over any smooth terrain profile: The generalised terrain parabolic equation (GT-PE), Appl. Acoust., 45, 113–129, https://doi.org/10.1016/0003-682X(94)00039-X, 1995. a
Scott, J. F., Blanc-Benon, P., and Gainville, O.: Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere, Wave Motion, 72, 41–61, https://doi.org/10.1016/j.wavemoti.2016.12.005, 2017. a
Shen, W. Z., Zhu, W. J., Barlas, E., and Li, Y.: Advanced flow and noise simulation method for wind farm assessment in complex terrain, Renew. Energ., 143, 1812–1825, https://doi.org/10.1016/j.renene.2019.05.140, 2019. a
Stevens, R. J. and Meneveau, C.: Flow Structure and Turbulence in Wind Farms, Annu. Rev. Fluid Mech., 49, 311–339, https://doi.org/10.1146/annurev-fluid-010816-060206, 2017. a
Stevens, R. J. A. M., Martínez-Tossas, L. A., and Meneveau, C.: Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments, Renew. Energ., 116, 470–478, https://doi.org/10.1016/j.renene.2017.08.072, 2018. a
Stieren, A., Gadde, S. N., and Stevens, R. J.: Modeling dynamic wind direction changes in large eddy simulations of wind farms, Renew. Energ., 170, 1342–1352, https://doi.org/10.1016/j.renene.2021.02.018, 2021. a
Stoevesandt, B., Schepers, G., Fuglsang, P., and Sun, Y., eds.: Handbook of Wind Energy Aerodynamics, Springer International Publishing, Cham, ISBN 978-3-030-31306-7, 978-3-030-31307-4, https://doi.org/10.1007/978-3-030-31307-4, 2022. a
Tian, Y. and Cotté, B.: Wind Turbine Noise Modeling Based on Amiet's Theory: Effects of Wind Shear and Atmospheric Turbulence, Acta Acust. united Ac., 102, 626–639, https://doi.org/10.3813/AAA.918979, 2016. a, b
Troian, R., Dragna, D., Bailly, C., and Galland, M.-A.: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow, J. Sound Vib., 392, 200–216, https://doi.org/10.1016/j.jsv.2016.10.014, 2017. a
van den Berg: The Beat is Getting Stronger: The Effect of Atmospheric Stability on Low Frequency Modulated Sound of Wind Turbines, Noise Notes, 4, 15–40, https://doi.org/10.1260/147547306777009247, 2005. a
Van Den Berg, G.: Effects of the wind profile at night on wind turbine sound, J. Sound Vib., 277, 955–970, https://doi.org/10.1016/j.jsv.2003.09.050, 2004. a
Short summary
We studied wind turbine noise propagation in a hilly terrain through numerical simulation in different scenarios. The sound pressure levels obtained for a wind turbine in front of a 2D hill and a wind turbine on a hilltop are compared to a baseline flat case. The source height and wind speed strongly influence sound propagation downwind. Topography influences the wake shape, inducing changes in the sound propagation that modify the sound pressure level and amplitude modulation downwind.
We studied wind turbine noise propagation in a hilly terrain through numerical simulation in...
Altmetrics
Final-revised paper
Preprint