Articles | Volume 9, issue 12
https://doi.org/10.5194/wes-9-2261-2024
https://doi.org/10.5194/wes-9-2261-2024
Research article
 | 
29 Nov 2024
Research article |  | 29 Nov 2024

Measurement of the turning behaviour of tethered membrane wings using automated flight manoeuvres

Christoph Elfert, Dietmar Göhlich, and Roland Schmehl

Related authors

Kite as a Sensor: Wind and State Estimation in Tethered Flying Systems
Oriol Cayon, Simon Watson, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-182,https://doi.org/10.5194/wes-2024-182, 2025
Preprint under review for WES
Short summary
Optimal Flight Pattern Debate for Airborne Wind Energy Systems: Circular or Figure-of-eight?
Dylan Eijkelhof, Nicola Rossi, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-139,https://doi.org/10.5194/wes-2024-139, 2024
Preprint under review for WES
Short summary
System design and scaling trends for airborne wind energy
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-161,https://doi.org/10.5194/wes-2024-161, 2024
Preprint under review for WES
Short summary
Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024,https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary
A listening experiment exploring the relationship between noise annoyance and sound quality metrics for airborne energy systems
Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet van Gool, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-125,https://doi.org/10.5194/wes-2024-125, 2024
Revised manuscript under review for WES
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Airborne technology
Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024,https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Mark Schelbergen and Roland Schmehl
Wind Energ. Sci., 9, 1323–1344, https://doi.org/10.5194/wes-9-1323-2024,https://doi.org/10.5194/wes-9-1323-2024, 2024
Short summary
Dynamic analysis of the tensegrity structure of a rotary airborne wind energy machine
Gonzalo Sánchez-Arriaga, Álvaro Cerrillo-Vacas, Daniel Unterweger, and Christof Beaupoil
Wind Energ. Sci., 9, 1273–1287, https://doi.org/10.5194/wes-9-1273-2024,https://doi.org/10.5194/wes-9-1273-2024, 2024
Short summary
Wake characteristics of a balloon wind turbine and aerodynamic analysis of its balloon using a large eddy simulation and actuator disk model
Aref Ehteshami and Mostafa Varmazyar
Wind Energ. Sci., 8, 1771–1793, https://doi.org/10.5194/wes-8-1771-2023,https://doi.org/10.5194/wes-8-1771-2023, 2023
Short summary
Refining the airborne wind energy system power equations with a vortex wake model
Filippo Trevisi, Carlo E. D. Riboldi, and Alessandro Croce
Wind Energ. Sci., 8, 1639–1650, https://doi.org/10.5194/wes-8-1639-2023,https://doi.org/10.5194/wes-8-1639-2023, 2023
Short summary

Cited articles

Baayen, J. H.: Trajectory tracking control of kites with system delay, arXiv [preprint], arXiv:1212.6388, https://doi.org/10.48550/arXiv.1212.6388, 2012. a
Bechtle, P., Schelbergen, M., Schmehl, R., Zillmann, U., and Watson, S.: Airborne Wind Energy Resource Analysis, Renew. Energy, 141, 1103–1116, https://doi.org/10.1016/j.renene.2019.03.118, 2019. a
Borobia, R., Sanchez-Arriaga, G., Serino, A., and Schmehl, R.: Flight Path Reconstruction and Flight Test of Four-line Power Kites, J. Guidance Control Dynam., 41, 2604–2614, https://doi.org/10.2514/1.G003581, 2018. a
Borobia-Moreno, R., Ramiro-Rebollo, D., Schmehl, R., and Sánchez-Arriaga, G.: Identification of kite aerodynamic characteristics using the estimation before modeling technique, Wind Energy, 24, 596–608, https://doi.org/10.1002/we.2591, 2021. a
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation, J. Guidance Control Dynam., 37, 1426–1436, https://doi.org/10.2514/1.G000545, 2014. a
Short summary
This article presents a tow test procedure for measuring the steering behaviour of tethered membrane wings. The experimental set-up includes a novel onboard sensor system for measuring the position and orientation of the towed wing, complemented by an attached low-cost multi-hole probe for measuring the relative flow velocity vector at the wing. The measured data (steering gain and dead time) can be used to improve kite models and simulate the operation of airborne wind energy systems.
Altmetrics
Final-revised paper
Preprint