Articles | Volume 10, issue 6
https://doi.org/10.5194/wes-10-1077-2025
https://doi.org/10.5194/wes-10-1077-2025
Research article
 | 
12 Jun 2025
Research article |  | 12 Jun 2025

A new gridded offshore wind profile product for US coasts using machine learning and satellite observations

James Frech, Korak Saha, Paige D. Lavin, Huai-Min Zhang, James Reagan, and Brandon Fung

Related authors

Climatological distribution of ocean acidification variables along the North American ocean margins
Li-Qing Jiang, Tim P. Boyer, Christopher R. Paver, Hyelim Yoo, James R. Reagan, Simone R. Alin, Leticia Barbero, Brendan R. Carter, Richard A. Feely, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 3383–3390, https://doi.org/10.5194/essd-16-3383-2024,https://doi.org/10.5194/essd-16-3383-2024, 2024
Short summary
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024,https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
A monthly surface pCO2 product for the California Current Large Marine Ecosystem
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Paige D. Lavin, and Adrienne J. Sutton
Earth Syst. Sci. Data, 14, 2081–2108, https://doi.org/10.5194/essd-14-2081-2022,https://doi.org/10.5194/essd-14-2081-2022, 2022
Short summary
An inventory of Arctic Ocean data in the World Ocean Database
Melissa M. Zweng, Tim P. Boyer, Olga K. Baranova, James R. Reagan, Dan Seidov, and Igor V. Smolyar
Earth Syst. Sci. Data, 10, 677–687, https://doi.org/10.5194/essd-10-677-2018,https://doi.org/10.5194/essd-10-677-2018, 2018
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Offshore technology
Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads in extreme idling conditions
Will Wiley, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 10, 941–970, https://doi.org/10.5194/wes-10-941-2025,https://doi.org/10.5194/wes-10-941-2025, 2025
Short summary
Gaussian mixture autoencoder for uncertainty-aware damage identification in a floating offshore wind turbine
Ana Fernandez-Navamuel, Nicolas Gorostidi, David Pardo, Vincenzo Nava, and Eleni Chatzi
Wind Energ. Sci., 10, 857–885, https://doi.org/10.5194/wes-10-857-2025,https://doi.org/10.5194/wes-10-857-2025, 2025
Short summary
Effect of Rotor Design on Energy Performance and Cost of Stationary Unmoored Floating Offshore Wind Turbines
Aurélien Babarit, Maximilien André, and Vincent Leroy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-15,https://doi.org/10.5194/wes-2025-15, 2025
Revised manuscript accepted for WES
Short summary
Estimating microplastics emissions from offshore wind turbine blades in the Dutch North Sea
Marco Caboni, Anna Elisa Schwarz, Henk Slot, and Harald van der Mijle Meijer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-175,https://doi.org/10.5194/wes-2024-175, 2024
Revised manuscript accepted for WES
Short summary
Experimental Validation of Parked Loads for a Floating Vertical Axis Wind Turbine: Wind-Wave Basin Tests
Md Sanower Hossain and D. Todd Griffith
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-156,https://doi.org/10.5194/wes-2024-156, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Atlantic Shores Offshore Wind: Atlantic shores offshore wind, ASOW-4, winds profile, Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) [data set], https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-4_wind.html (last access: 26 February 2024), 2023a. 
Atlantic Shores Offshore Wind: Atlantic shores offshore wind, ASOW-4, timeseries data, Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) [data set], https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-4_timeseries.html (last access: 26 February 2024), 2023b. 
Atlantic Shores Offshore Wind: Atlantic shores offshore wind, ASOW-6, winds profile, Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) [data set], https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-6_wind.html (last access: 1 March 2024), 2023c. 
Atlantic Shores Offshore Wind: Atlantic shores offshore wind, ASOW-6, timeseries data, Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) [data set], https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_ASOW-6_timeseries.html (last access: 1 March 2024), 2023d. 
Baquero, L., Torio, H., and Leask, P.: Machine learning algorithms for vertical wind speed data extrapolation: Comparison and performance using mesoscale and measured site data, Energies, 15, 5518, https://doi.org/10.3390/en15155518, 2022. 
Download
Short summary
A machine learning model is developed using lidar stations around US coasts to extrapolate wind speed profiles up to the hub heights of wind turbines from surface wind speeds. Independent validation shows that our model vastly outperforms traditional methods for vertical wind extrapolation. We produce a new long-term gridded dataset of wind speed profiles from 20 to 200 m at 0.25° and 6-hourly resolution from 1987 to the present by applying this model to the National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Information (NCEI) Blended Seawinds product.
Share
Altmetrics
Final-revised paper
Preprint