Articles | Volume 10, issue 8
https://doi.org/10.5194/wes-10-1575-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-1575-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Geosciences and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Sukanta Basu
Atmospheric Sciences Research Center, State University of New York, Albany, NY, USA
Department of Environmental and Sustainable Engineering, University at Albany, Albany, NY, USA
George Lavidas
Marine Renewable Energies Lab, Offshore Engineering, Hydraulic Engineering Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Revised manuscript under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Serkan Kartal, Sukanta Basu, and Simon J. Watson
Wind Energ. Sci., 8, 1533–1551, https://doi.org/10.5194/wes-8-1533-2023, https://doi.org/10.5194/wes-8-1533-2023, 2023
Short summary
Short summary
Peak wind gust is a crucial meteorological variable for wind farm planning and operations. Unfortunately, many wind farms do not have on-site measurements of it. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset, generating long-term, site-specific peak wind gust series.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Bedassa R. Cheneka, Simon J. Watson, and Sukanta Basu
Wind Energ. Sci., 5, 1731–1741, https://doi.org/10.5194/wes-5-1731-2020, https://doi.org/10.5194/wes-5-1731-2020, 2020
Short summary
Short summary
Wind power ramps have important characteristics for the planning and integration of wind power production into electricity. We present a new and simple algorithm that detects wind power ramp characteristics. The algorithm classifies wind power production into ramp-ups, ramp-downs, and no-ramps; and it can detect wind power ramp characteristics that show a temporal increasing (decreasing) power capacity.
Cited articles
Aird, J. A., Barthelmie, R. J., Shepherd, T. J., and Pryor, S. C.: WRF-simulated low-level jets over Iowa: characterization and sensitivity studies, Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, 2021. a
Arthur, R. S., Mirocha, J. D., Marjanovic, N., Hirth, B. D., Schroeder, J. L., Wharton, S., and Chow, F. K.: Multi-Scale Simulation of Wind Farm Performance during a Frontal Passage, Atmosphere, 11, 245, https://doi.org/10.3390/atmos11030245, 2020. a
Baki, H.: Dataset for “Modelling Frontal Low-Level Jets and Associated Extreme Wind Power Ramps over the North Sea”, Zenodo [data set], https://doi.org/10.5281/zenodo.15033463, 2025. a
Blackadar, A. K.: Boundary layer wind maxima and their significance for the growth of nocturnal inversions, B. Am. Meteorol. Soc., 38, 283–290, 1957. a
Brill, K. F., Uccellini, L. W., Burkhart, R. P., Warner, T. T., and Anthes, R. A.: Numerical simulations of a transverse indirect circulation and low-level jet in the exit region of an upper-level jet, J. Atmos. Sci., 42, 1306–1320, 1985. a
Browning, K. A.: Mesoscale Structure of Rain Systems in the British Isles, J. Meteorol. Soc. Jpn. Ser. II, 52, 314–327, 1974. a
Browning, K. A.: Conceptual Models of Precipitation Systems, Weather Forecast., 1, 23–41, 1986. a
Browning, K. A. and Monk, G. A.: A Simple Model for the Synoptic Analysis of Cold Fronts, Q. J. Roy. Meteor. Soc., 108, 435–452, 1982. a
Browning, K. A., Jerrett, D., Nash, J., Oakley, T., and Roberts, N. M.: Cold frontal structure derived from radar wind profilers, Meteorol. Appl., 5, 67–74, 1998. a
Carvalho, D., Rocha, A., Gómez-Gesteira, M., and Santos, C. S.: WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal, Appl. Energ., 117, 116–126, 2014. a
Chen, Y.-L., Chen, X. A., and Zhang, Y.-X.: A diagnostic study of the low-level jet during TAMEX IOP 5, Mon. Weather Rev., 122, 2257–2284, 1994. a
Cheneka, B. R., Watson, S. J., and Basu, S.: Associating Synoptic-Scale Weather Patterns with Aggregated Offshore Wind Power Production and Ramps, Energies, 14, 3903, https://doi.org/10.3390/en14133903, 2021. a
Cutler, N., Kay, M., Jacka, K., and Nielsen, T. S.: Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT, Wind Energy, 10, 453–470, 2007. a
Dalton, A., Bekker, B., and Kruger, A.: Wind power variability during the passage of cold fronts across South Africa, J. Energy South. Afr., 30, 52–67, 2019. a
de Linaje, N. G.-A., Mattar, C., and Borvarán, D.: Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile, Energy, 188, 116027, https://doi.org/10.1016/j.energy.2019.116027, 2019. a
Demirdjian, R., Norris, J. R., Martin, A., and Martin Ralph, F.: Dropsonde Observations of the Ageostrophy within the Pre-Cold-Frontal Low-Level Jet Associated with Atmospheric Rivers, Mon. Weather Rev., 148, 1389–1406, 2020. a
Dreef, J.: Simulating Frontal Low Level Jets and Quantifying their Impact on Wind Energy Production, mSc Thesis, Delft University of Technology, https://resolver.tudelft.nl/uuid:2b50a76b-ada9-4279-a67e-9c50bb4025cf (last access: 21 July 2025), 2019. a
Drew, D. R., Cannon, D. J., Barlow, J. F., Coker, P. J., and Frame, T. H. A.: The importance of forecasting regional wind power ramping: A case study for the UK, Renew. Energ., 114, 1201–1208, 2017. a
Dudhia, J.: A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front, Mon. Weather Rev., 121, 1493–1513, 1993. a
Ela, E. and Kirby, B.: ERCOT event on February 26, 2008: Lessons learned, Tech. rep., National Renew. Energ. Lab.(NREL), Golden, CO (United States), https://doi.org/10.2172/1218412, 2008. a
European Union: Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources, https://eur-lex.europa.eu/eli/dir/2018/2001/oj (last access: 18 October 2023), 2018. a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J., and Barstad, I.: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model, Mon. Weather Rev., 140, 3017–3038, 2012. a
Gallego-Castillo, C., Cuerva-Tejero, A., and Lopez-Garcia, O.: A review on the recent history of wind power ramp forecasting, Renewable Sustainable Energy Rev., 52, 1148–1157, 2015. a
Gerber, H., Chang, S., and Holt, T.: Evolution of a marine boundary-layer jet, J. Atmos. Sci., 46, 1312–1326, 1989. a
Gualtieri, G.: Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review, Renewable and Sustainable Energy Reviews, 167, 112741, https://doi.org/10.1016/j.rser.2022.112741, 2022. a, b
Hahmann, A. N., Sīle, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Olsen, B. T., and Söderberg, S.: The making of the New European Wind Atlas – Part 1: Model sensitivity, Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, 2020. a
Hallgren, C., Aird, J. A., Ivanell, S., Körnich, H., Barthelmie, R. J., Pryor, S. C., and Sahlée, E.: Brief communication: On the definition of the low-level jet, Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, 2023. a, b
Haupt, S. E., Mahoney, W. P., and Parks, K.: Wind Power Forecasting, in: Weather Matters for Energy, edited by: Troccoli, A., Dubus, L., and Haupt, S. E., Springer New York, New York, NY, 295–318, Online ISBN: 978-1-4614-9221-4, https://doi.org/10.1007/978-1-4614-9221-4_14, 2014. a
Hawbecker, P., Basu, S., and Manuel, L.: Realistic simulations of the July 1, 2011 severe wind event over the Buffalo Ridge Wind Farm, Wind Energy, 20, 1803–1822, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023. a
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103–120, 2004. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Ivanova, T., Porchetta, S., Buckingham, S., Glabeke, G., van Beeck, J., and Munters, W.: Improving wind and power predictions via four-dimensional data assimilation in the WRF model: case study of storms in February 2022 at Belgian offshore wind farms, Wind Energ. Sci., 10, 245–268, https://doi.org/10.5194/wes-10-245-2025, 2025. a
Jahn, D. E., Takle, E. S., and Gallus, W. A.: Improving Wind-Ramp Forecasts in the Stable Boundary Layer, Bound.-Lay. Meteorol., 163, 423–446, 2017. a
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-Bustamante, E.: A revised scheme for the WRF surface layer formulation, Mon. Weather Rev., 140, 898–918, 2012. a
Jiménez, P. A., Navarro, J., Palomares, A. M., and Dudhia, J.: Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: A composite-based analysis with the Weather Research and Forecasting model over Horns Rev, Wind Energy, 18, 559–566, 2015. a
Kain, J. S.: The Kain–Fritsch convective parameterization: an update, J. Appl. Meteorol,, 43, 170–181, 2004. a
King, J., Andy, C., and Bri-Mathias, H.: Validation of power output for the WIND Toolkit, Tech. Rep., Technical report NREL/TP-5D00-61714”, National Renew. Energ. Lab.(NREL), Golden, CO (United States), https://doi.org/10.2172/1159354, 2014. a
Kotroni, V. and Lagouvardos, K.: Low-level jet streams associated with atmospheric cold fronts: Seven case studies from the Fronts 87 Experiment, Geophys. Res. Lett., 20, 1371–1374, 1993. a
Lacerda, M., Couto, A., and Estanqueiro, A.: Wind Power Ramps Driven by Windstorms and Cyclones, Energies, 10, 1475, https://doi.org/10.3390/en10101475, 2017. a
Larsén, X. G. and Fischereit, J.: A case study of wind farm effects using two wake parameterizations in the Weather Research and Forecasting (WRF) model (V3.7.1) in the presence of low-level jets, Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, 2021. a
Li, J. and Chen, Y.-L.: Barrier jets during TAMEX, Mon. Weather Rev., 126, 959–971, 1998. a
Linden, S., Myers, B., and Haupt, S. E.: Observation-based wind-power ramp forecast system, in: Proc. American Meteorological Sciety Annual Meeting, New Orleans, Louisiana, US, 22–26 January 2012, 22–26, https://ams.confex.com/ams/92Annual/webprogram/Paper199621.html (last access: 21 July 2025), 2012. a
Mararakanye, N. and Bekker, B.: Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics, Renewable Sustainable Energy Rev., 108, 441–451, 2019. a
Mehta, M., Zaaijer, M., and von Terzi, D.: Drivers for optimum sizing of wind turbines for offshore wind farms, Wind Energ. Sci., 9, 141–163, https://doi.org/10.5194/wes-9-141-2024, 2024. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982. a
Nakanishi, M. and Niino, H.: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog, Bound.-Lay. Meteorol., 119, 397–407, 2006. a
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn. Ser. II, 87, 895–912, 2009. a
National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive, NCAR [data set], https://doi.org/10.5065/D65D8PWK, 2015. a
Orlanski, I. and Ross, B.: The circulation associated with a cold front. Part I: Dry case, J. Atmos. Sci., 34, 1619–1633, 1977. a
Parish, T. R. and Oolman, L. D.: On the role of sloping terrain in the forcing of the Great Plains low-level jet, J. Atmos. Sci., 67, 2690–2699, 2010. a
Pereyra-Castro, K. and Caetano, E.: Wind-Ramp Predictability, Atmosphere, 13, 453, https://doi.org/10.3390/atmos13030453, 2022. a
Pichault, M., Vincent, C., Skidmore, G., and Monty, J.: Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes, Wind Energ. Sci., 6, 131–147, https://doi.org/10.5194/wes-6-131-2021, 2021. a, b
Ridal, M., Bazile, E., Le Moigne, P., Randriamampianina, R., Schimanke, S., Andrae, U., Berggren, L., Brousseau, P., Dahlgren, P., Edvinsson, L., El-Said, A., Glinton, M., Hagelin, S., Hopsch, S., Isaksson, L., Medeiros, P., Olsson, E., Unden, P., and Qi Wang, Z.: CERRA, the Copernicus European Regional Reanalysis system, Q. J. Roy. Meteor. Soc., 150, 3385–3411, 2024. a
Schimanke, S., Ridal, M., Le Moigne, P., Berggren, L., Undén, P., Randriamampianina, R., Andrea, U., Bazile, E., Bertelsen, A., Brousseau, P., Dahlgren, P., Edvinsson, L., El Said, A., Glinton, M., Hopsch, S., Isaksson, L., Mladek, R., Olsson, E., Verrelle, A., and Wang Z. Q.: CERRA sub-daily regional reanalysis data for Europe on pressure levels from 1984 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.a39ff99f, 2021. a, b
Shin, H. H. and Hong, S.-Y.: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions, Mon. Weather Rev., 143, 250–271, 2015. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A description of the Advanced Research WRF version 4, NCAR Tech. Note NCAR/TN-556+STR, 145, https://doi.org/10.5065/1dfh-6p97, 2019. a
Smedman, A.-S., Tjernström, M., and Högström, U.: Analysis of the turbulence structure of a marine low-level jet, Bound.-Lay. Meteorol., 66, 105–126, 1993. a
Smedman, A.-S., Bergström, H., and Högström, U.: Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet, Bound.-Lay. Meteorol., 76, 211–232, 1995. a
Smirnova, T., Kenyon, J., Turner, D., Brown, J., Zheng, W., and Green, B.: A description of the MYNN surface-layer scheme, NOAA Tech. Memo. OAR GSL-67, https://doi.org/10.25923/f6a8-bc75, 2021. a
Storm, B., Dudhia, J., Basu, S., Swift, A., and Giammanco, I.: Evaluation of the weather research and forecasting model on forecasting low-level jets: Implications for wind energy, Wind Energy, 12, 81–90, 2009. a
Tambke, J., Lange, M., Focken, U., Wolff, J.-O., and Bye, J. A.: Forecasting offshore wind speeds above the North Sea, Wind Energy, 8, 3–16, 2005. a
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenea, R. H.: Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5), in: Proceedings of the 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, Seattle, WA, USA, 10–15 January 2004, vol. 14, https://ams.confex.com/ams/84Annual/webprogram/Paper69061.html (last access: 21 July 2025), 2004. a
Thorpe, A. J. and Clough, S. A.: Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87, Q. J. Roy. Meteor. Soc., 117, 903–941, 1991. a
Uccellini, L. W. and Johnson, D. R.: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms, Mon. Weather Rev., 107, 682–703, 1979. a
Ueckerdt, F., Brecha, R., and Luderer, G.: Analyzing major challenges of wind and solar variability in power systems, Renew. Energ., 81, 1–10, https://doi.org/10.1016/j.renene.2015.03.002, 2015. a
Valldecabres, L., Bremen, L., and Kühn, M.: Minute‐scale detection and probabilistic prediction of offshore wind turbine power ramps using dual‐Doppler radar, Wind Energy, 23, 2202–2224, 2020. a
Vemuri, A., Buckingham, S., Munters, W., Helsen, J., and van Beeck, J.: Sensitivity analysis of mesoscale simulations to physics parameterizations over the Belgian North Sea using Weather Research and Forecasting – Advanced Research WRF (WRF-ARW), Wind Energ. Sci., 7, 1869–1888, https://doi.org/10.5194/wes-7-1869-2022, 2022. a, b, c
Veron, D. E., Brodie, J. F., Shirazi, Y. A., and Gilchrist, J. R.: Modeling the electrical grid impact of wind ramp-up forecasting error offshore in the Mid-Atlantic region, J. Renew. Sustain. Ener., 10, 013308, https://doi.org/10.1063/1.4990684, 2018. a, b
Wagner, D., Steinfeld, G., Witha, B., Wurps, H., and Reuder, J.: Low level jets over the southern North Sea, Meteorol. Z., 28, 389–415, 2019. a
Wakimoto, R. M. and Murphey, H. V.: Airborne Doppler radar and sounding analysis of an oceanic cold front, Mon. Weather Rev., 136, 1475–1491, 2008. a
Wilczak, J., Finley, C., Freedman, J., Cline, J., Bianco, L., Olson, J., Djalalova, I., Sheridan, L., Ahlstrom, M., Manobianco, J., Zack, J., Carley, J. R., Benjamin, S., Coulter, R., Berg, L. K., Mirocha, J., Clawson, K., Natenberg, E., and Marquis, M.: The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs, B. Am. Meteorol. Soc., 96, 1699–1718, 2015. a
Wilczak, J. M., Olson, J. B., Djalalova, I., Bianco, L., Berg, L. K., Shaw, W. J., Coulter, R. L., Eckman, R. M., Freedman, J., Finley, C., and Cline, J.: Data assimilation impact of in situ and remote sensing meteorological observations on wind power forecasts during the first Wind Forecast Improvement Project (WFIP), Wind Energy, 22, 932–944, 2019. a
Wind Europe: Offshore wind in Europe: Key trends and statistics 2019, https://windeurope.org/about-wind/statistics/offshore/european-offshore-wind-industry-key-trends-statistics-2019/ (last access: 18 October 2023), 2019. a
Xing-Sheng, L., Gaynor, J., and Kaimal, J.: A study of multiple stable layers in the nocturnal lower atmosphere, Bound.-Lay. Meteorol., 26, 157–168, 1983. a
Zhao, J., Chen, X., and He, M.: Detection of impending ramp for improved wind farm power forecasting, in: 2019 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 7–8 February 2019, 1–6, https://doi.org/10.1109/TPEC.2019.8662203, 2019. a
Zheng, C. W., Li, C. Y., Pan, J., Liu, M. Y., and Xia, L. L.: An overview of global ocean wind energy resource evaluations, Renewable and Sustainable Energy Reviews, 53, 1240–1251, 2016. a
Short summary
Our study explores how frontal low-level jets (FLLJs) impact wind power production by causing ramp-down events. Using the Weather Research and Forecasting model, we analyzed various modeling configurations and found that initial and boundary conditions, domain configuration, and wind farm parameterization significantly influence simulations. Our findings show such extreme events can be forecasted 1 d in advance, helping manage wind power more efficiently for a stable, reliable energy supply.
Our study explores how frontal low-level jets (FLLJs) impact wind power production by causing...
Altmetrics
Final-revised paper
Preprint