Articles | Volume 10, issue 12
https://doi.org/10.5194/wes-10-3001-2025
https://doi.org/10.5194/wes-10-3001-2025
Research article
 | 
19 Dec 2025
Research article |  | 19 Dec 2025

On the potential of aerodynamic pressure measurements for structural damage detection

Philip Franz, Imad Abdallah, Gregory Duthé, Julien Deparday, Ali Jafarabadi, Xudong Jian, Max von Danwitz, Alexander Popp, Sarah Barber, and Eleni Chatzi

Related authors

Fostering open science through a digital open innovation platform – structural health monitoring case study
Sarah Barber, Shun Wang, Francesc Pozo, Yolanda Vidal, Marcela Rodrigues Machado, Amanda Aryda Silva Rodrigues de Sousa, Jefferson da Silva Coelho, Xukai Zhang, Yao-Teng Hu, Arash Noshadravan, Theodoros Varouxis, Mahmoud Abdelhak, Ramin Ghiasi, and Abdollah Malekjafarian
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-122,https://doi.org/10.5194/wes-2025-122, 2025
Preprint under review for WES
Short summary
Understanding organisational culture and digitalisation in the wind energy sector
Sarah Barber, Anna Maria Sempreviva, Jeffrey Clerc, and Anne Hegemann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-159,https://doi.org/10.5194/wes-2025-159, 2025
Preprint under review for WES
Short summary
Gaussian mixture autoencoder for uncertainty-aware damage identification in a floating offshore wind turbine
Ana Fernandez-Navamuel, Nicolas Gorostidi, David Pardo, Vincenzo Nava, and Eleni Chatzi
Wind Energ. Sci., 10, 857–885, https://doi.org/10.5194/wes-10-857-2025,https://doi.org/10.5194/wes-10-857-2025, 2025
Short summary
Knowledge engineering for wind energy
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024,https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Towards a dynamic earthquake risk framework for Switzerland
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024,https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary

Cited articles

Abdallah, I., Deparday, J., Marykovskiy, Y., and Barber, S.: AeroSense Measurements: Wind Tunnel EPFL (1–), Gdańsk University of Technology [data set], https://doi.org/10.34808/gq12-wx33, 2023. a
Abdi, S., Mani, M., Ajalli, F., and Soltani, M. R.: Unsteady surface pressure measurement on a pitching air foil, 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Pretoria, South Africa, 30 June–2 July 2008, http://hdl.handle.net/2263/40005 (last access: 31 October 2024), 2008. a, b
Ajalli, F., Mani, M., and Soltani, M. R.: An experimental investigation of pressure distribution around a heaving airfoil [conference paper], 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Sun City, South Africa, 1–4 July 2007, http://hdl.handle.net/2263/40993 (last access: 31 October 2024), 2007. a, b
Allemang, R. J. and Brown, D. L.: A correlation coefficient for modal vector analysis, in: 1st International Modal Analysis Conference, Society for Experimental Mechanics, Orlando, FLorida, USA, 110–116, 1982. a
Download
Short summary
New designs of large wind turbine blades have become increasingly flexible and thus need cost-efficient monitoring solutions. Hence, we investigate if aerodynamic pressure measurements from a low-cost sensing system can be used to detect structural damage. Our research is based on a wind tunnel study, emulating a simplified wind turbine blade under various conditions. We show that, when using a convolutional-neural-network-based method, structural damage can indeed be detected and its severity can be rated.
Share
Altmetrics
Final-revised paper
Preprint