Articles | Volume 5, issue 1
Wind Energ. Sci., 5, 89–104, 2020
https://doi.org/10.5194/wes-5-89-2020
Wind Energ. Sci., 5, 89–104, 2020
https://doi.org/10.5194/wes-5-89-2020

Research article 14 Jan 2020

Research article | 14 Jan 2020

Hurricane eyewall winds and structural response of wind turbines

Amber Kapoor et al.

Related subject area

Offshore technology
Revealing system variability in offshore service operations through systemic hazard analysis
Romanas Puisa, Victor Bolbot, Andrew Newman, and Dracos Vassalos
Wind Energ. Sci., 6, 273–286, https://doi.org/10.5194/wes-6-273-2021,https://doi.org/10.5194/wes-6-273-2021, 2021
Short summary
Characterization of the unsteady aerodynamic response of a floating offshore wind turbine to surge motion
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020,https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Characterisation of the offshore precipitation environment to help combat leading edge erosion of wind turbine blades
Robbie Herring, Kirsten Dyer, Paul Howkins, and Carwyn Ward
Wind Energ. Sci., 5, 1399–1409, https://doi.org/10.5194/wes-5-1399-2020,https://doi.org/10.5194/wes-5-1399-2020, 2020
Short summary
US East Coast synthetic aperture radar wind atlas for offshore wind energy
Tobias Ahsbahs, Galen Maclaurin, Caroline Draxl, Christopher R. Jackson, Frank Monaldo, and Merete Badger
Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020,https://doi.org/10.5194/wes-5-1191-2020, 2020
Short summary
Brief communication: Nowcasting of precipitation for leading-edge-erosion-safe mode
Anna-Maria Tilg, Charlotte Bay Hasager, Hans-Jürgen Kirtzel, and Poul Hummelshøj
Wind Energ. Sci., 5, 977–981, https://doi.org/10.5194/wes-5-977-2020,https://doi.org/10.5194/wes-5-977-2020, 2020
Short summary

Cited articles

Amirinia, G. and Jung, S.: Buffeting response analysis of o shore wind turbines subjected to hurricanes, Ocean Eng., 141, 1–11, 2017. 
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW reference wind turbine, Report-I-0092 5, DTU Wind Energy, Kongen Lyngby, Denmark, 2013. 
Bryan, G. H. and Rotunno, R.: The Maximum Intensity of Tropical Cyclones in Axisymmetric Numerical Model Simulations, Mon. Weather Rev., 137, 1770–1789, https://doi.org/10.1175/2008MWR2709.1, 2009a. 
Bryan, G. H. and Rotunno, R.: The Maximum Intensity of Tropical Cyclones in Axisymmetric Numerical Model Simulations, Mon. Weather Rev., 137, 1770–1789, https://doi.org/10.1175/2008MWR2709.1, 2009b. 
Bryan, G. H., Worsnop, R. P., Lundquist, J. K., and Zhang, J. A.: A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones, Bound.-Lay. Meteorol., 162, 475–502, https://doi.org/10.1007/s10546-016-0207-0, 2016. 
Download
Short summary
Offshore wind energy is a burgeoning area of renewable energy that is at an early stage of development in the United States. Exposure of offshore wind turbines to hurricanes must be assessed and mitigated to ensure the security of the renewable energy supply. This research assesses the impact of hurricane wind fields on the structural response of wind turbines. Such wind fields have characteristics that may pose heretofore unforeseen structural challenges to offshore wind turbines.