Articles | Volume 6, issue 6
Wind Energ. Sci., 6, 1491–1500, 2021
https://doi.org/10.5194/wes-6-1491-2021
Wind Energ. Sci., 6, 1491–1500, 2021
https://doi.org/10.5194/wes-6-1491-2021

Research article 30 Nov 2021

Research article | 30 Nov 2021

On turbulence models and lidar measurements for wind turbine control

Liang Dong et al.

Related authors

Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Design and analysis of a wake model for spatially heterogeneous flow
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021,https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Control-oriented model for secondary effects of wake steering
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021,https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary
Model-free estimation of available power using deep learning
Tuhfe Göçmen, Albert Meseguer Urbán, Jaime Liew, and Alan Wai Hou Lio
Wind Energ. Sci., 6, 111–129, https://doi.org/10.5194/wes-6-111-2021,https://doi.org/10.5194/wes-6-111-2021, 2021
Short summary

Related subject area

Wind and turbulence
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021,https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021,https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021,https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021,https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021,https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary

Cited articles

Bak, C., Zahle, F., Bitsche, R., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW Reference Wind Turbine, Tech. rep., DTU Wind Energy Report-I-0092, DTU Wind Energy, Roskilde, Denmark, 2013. a
Bossanyi, E.: Un-freezing the turbulence: application to LiDAR-assisted wind turbine control, IET Renew. Power Generat., 7, 321–329, 2013. a, b
Bossanyi, E., Kumar, A., and Hugues-Salas, O.: Wind turbine control applications of turbine-mounted LIDAR, J. Phys.: Conf. Ser., 555, 012011, https://doi.org/10.1088/1742-6596/555/1/012011, 2014. a
Chougule, A., Mann, J., Kelly, M., Sun, J., Lenschow, D. H., and Patton, E. G.: Vertical cross-spectral phases in neutral atmospheric flow, J. Turbulence, 13, N36, https://doi.org/10.1080/14685248.2012.711524, 2012. a
Eliassen, L. and Obhrai, C.: Coherence of Turbulent Wind under Neutral Wind Conditions at FINO1, in: Energy Procedia, vol. 94, Elsevier Ltd, Trondheim, Norway, 388–398, https://doi.org/10.1016/j.egypro.2016.09.199, 2016. a
Download
Short summary
This paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of lidar-assisted control (LAC) in wind turbine design. The value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors.