Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1533-2022
https://doi.org/10.5194/wes-7-1533-2022
Research article
 | 
20 Jul 2022
Research article |  | 20 Jul 2022

Wind turbine main-bearing lubrication – Part 2: Simulation-based results for a double-row spherical roller main bearing in a 1.5 MW wind turbine

Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce

Related authors

Control-oriented modelling of wind direction variability
Scott Dallas, Adam Stock, and Edward Hart
Wind Energ. Sci., 9, 841–867, https://doi.org/10.5194/wes-9-841-2024,https://doi.org/10.5194/wes-9-841-2024, 2024
Short summary
Impacts of wind field characteristics and non-steady deterministic wind events on time-varying main-bearing loads
Edward Hart, Adam Stock, George Elderfield, Robin Elliott, James Brasseur, Jonathan Keller, Yi Guo, and Wooyong Song
Wind Energ. Sci., 7, 1209–1226, https://doi.org/10.5194/wes-7-1209-2022,https://doi.org/10.5194/wes-7-1209-2022, 2022
Short summary
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022,https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary
Wind turbine drivetrains: state-of-the-art technologies and future development trends
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022,https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Constructing fast and representative analytical models of wind turbine main bearings
James Stirling, Edward Hart, and Abbas Kazemi Amiri
Wind Energ. Sci., 6, 15–31, https://doi.org/10.5194/wes-6-15-2021,https://doi.org/10.5194/wes-6-15-2021, 2021
Short summary

Related subject area

Thematic area: Materials and operation | Topic: Operation and maintenance, condition monitoring, reliability
Operation and maintenance cost comparison between 15 MW direct-drive and medium-speed offshore wind turbines
Orla Donnelly, Fraser Anderson, and James Carroll
Wind Energ. Sci., 9, 1345–1362, https://doi.org/10.5194/wes-9-1345-2024,https://doi.org/10.5194/wes-9-1345-2024, 2024
Short summary
Sensitivity of fatigue reliability in wind turbines: effects of design turbulence and the Wöhler exponent
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024,https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Machine learning based virtual load sensors for mooring lines using motion and lidar measurements
Moritz Johann Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-25,https://doi.org/10.5194/wes-2024-25, 2024
Revised manuscript accepted for WES
Short summary
Unsupervised anomaly detection of permanent magnet offshore wind generators through electrical and electromagnetic measurements
Ali Dibaj, Mostafa Valavi, and Amir R. Nejad
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-26,https://doi.org/10.5194/wes-2024-26, 2024
Revised manuscript accepted for WES
Short summary
Full-Scale Wind Turbine Performance Assessment: A Study of Aerodynamic Degradation and Operational Influences
Tahir H. Malik and Christian Bak
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-21,https://doi.org/10.5194/wes-2024-21, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

ASTM: D341–20e1 Standard Practice for Viscosity-Temperature Equations and Charts for Liquid Petroleum or Hydrocarbon Products, Standard, ASTM International, West Conshohocken, PA, https://www.astm.org/d0341-20e01.html (last access: 14 July 2022), 2020. a
Bair, S.: Shear thinning correction for rolling/sliding elastohydrodynamic film thickness, P. I. Mech. Eng. J-J. Eng., 219, 69–74, 2005. a
Beretta, M., Julian, A., Sepulveda, J., Cusidó, J., and Porro, O.: An Ensemble Learning Solution for Predictive Maintenance of Wind Turbines Main Bearing, Sensors, 21, 1512, https://doi.org/10.3390/s21041512, 2021. a
Bergua Archeli, R., Keller, J., Bankestrom, O., Dunn, M., Guo, Y., Key, A., and Young, E.: Up-Tower Investigation of Main Bearing Cage Slip and Loads, National Renewable Energy Lab (NREL), Golden, CO, USA, Tech. rep., https://www.nrel.gov/docs/fy22osti/81240.pdf (last access: 14 July 2022), 2021. a, b
Cardaun, M., Roscher, B., Schelenz, R., and Jacobs, G.: Analysis of Wind-Turbine Main Bearing Loads Due to Constant Yaw Misalignments over a 20 Years Timespan, Energies 2019, 12, 1768, https://doi.org/10.3390/en12091768, 2019. a
Short summary
This paper is the second in a two-part study on lubrication in wind turbine main bearings. Investigations are conducted concerning lubrication in the double-row spherical roller main bearing of a 1.5 MW wind turbine. This includes effects relating to temperature, starvation, grease-thickener interactions and possible non-steady EHL effects. Results predict that the modelled main bearing would be expected to operate under mixed lubrication conditions for a non-negligible proportion of its life.
Altmetrics
Final-revised paper
Preprint