Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-2135-2022
https://doi.org/10.5194/wes-7-2135-2022
Research article
 | 
26 Oct 2022
Research article |  | 26 Oct 2022

Gaussian mixture model for extreme wind turbulence estimation

Xiaodong Zhang and Anand Natarajan

Related authors

Extreme wind turbine response extrapolation with the Gaussian mixture model
Xiaodong Zhang and Nikolay Dimitrov
Wind Energ. Sci., 8, 1613–1623, https://doi.org/10.5194/wes-8-1613-2023,https://doi.org/10.5194/wes-8-1613-2023, 2023
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 297–320, https://doi.org/10.5194/wes-9-297-2024,https://doi.org/10.5194/wes-9-297-2024, 2024
Short summary
Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024,https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
The wind farm pressure field
Ronald B. Smith
Wind Energ. Sci., 9, 253–261, https://doi.org/10.5194/wes-9-253-2024,https://doi.org/10.5194/wes-9-253-2024, 2024
Short summary
Offshore low-level jet observations and model representation using lidar buoy data off the California coast
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-152,https://doi.org/10.5194/wes-2023-152, 2023
Revised manuscript under review for WES
Short summary
Realistic turbulent inflow conditions for estimating the performance of a floating wind turbine
Cédric Raibaudo, Jean-Christophe Gilloteaux, and Laurent Perret
Wind Energ. Sci., 8, 1711–1725, https://doi.org/10.5194/wes-8-1711-2023,https://doi.org/10.5194/wes-8-1711-2023, 2023
Short summary

Cited articles

Abdallah, I.: Assessment of extreme design loads for modern wind turbines using the probabilistic approach, DTU Wind Energy, ISBN 8793278322, ISBN 9788793278325, 2015. a
Abdallah, I., Natarajan, A., and Sørensen, J. D.: Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability, Renew. Energy, 87, 464–477, https://doi.org/10.1016/j.renene.2015.10.044, 2016. a
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Selected papers of hirotugu akaike, Springer, New York, 199–213, https://doi.org/10.1007/978-1-4612-1694-0_15, 1998. a
Arthur, D. and Vassilvitskii, S.: k-means++: The advantages of careful seeding, Tech. rep., Society for Industrial and Applied Mathematics, Stanford, USA, 1027–1035, ISBN 978-0-89871-624-5, 2006. a
Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., and Roncalli, T.: Copulas for finance – a reading guide and some applications, SSRN Electron. J., https://doi.org/10.2139/ssrn.1032533, 2011. a
Download
Short summary
Joint probability distribution of 10 min mean wind speed and the standard deviation is proposed using the Gaussian mixture model and has been shown to agree well with 15 years of measurements. The environmental contour with a 50-year return period (extreme turbulence) is estimated. The results from the model could be taken as inputs for structural reliability analysis and uncertainty quantification of wind turbine design loads.
Altmetrics
Final-revised paper
Preprint