Articles | Volume 8, issue 12
https://doi.org/10.5194/wes-8-1873-2023
https://doi.org/10.5194/wes-8-1873-2023
Research article
 | 
14 Dec 2023
Research article |  | 14 Dec 2023

A new methodology for upscaling semi-submersible platforms for floating offshore wind turbines

Kaylie L. Roach, Matthew A. Lackner, and James F. Manwell

Related authors

Grand challenges in the design, manufacture, and operation of future wind turbine systems
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023,https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Design optimization of offshore wind jacket piles by assessing support structure orientation relative to metocean conditions
Maciej M. Mroczek, Sanjay Raja Arwade, and Matthew A. Lackner
Wind Energ. Sci., 8, 807–817, https://doi.org/10.5194/wes-8-807-2023,https://doi.org/10.5194/wes-8-807-2023, 2023
Short summary
Hurricane eyewall winds and structural response of wind turbines
Amber Kapoor, Slimane Ouakka, Sanjay R. Arwade, Julie K. Lundquist, Matthew A. Lackner, Andrew T. Myers, Rochelle P. Worsnop, and George H. Bryan
Wind Energ. Sci., 5, 89–104, https://doi.org/10.5194/wes-5-89-2020,https://doi.org/10.5194/wes-5-89-2020, 2020
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Offshore technology
Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads
Will Wiley, Jason Jonkman, Amy Robertson, and Kelsey Shaler
Wind Energ. Sci., 8, 1575–1595, https://doi.org/10.5194/wes-8-1575-2023,https://doi.org/10.5194/wes-8-1575-2023, 2023
Short summary
Verifying QBlade-Ocean: A Hydrodynamic Extension to the Wind Turbine Simulation Tool QBlade
Robert Behrens de Luna, Sebastian Perez-Becker, Joseph Saverin, David Marten, Francesco Papi, Marie-Laure Ducasse, Felicién Bonnefoy, Alessandro Bianchini, and Christian-Oliver Paschereit
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-117,https://doi.org/10.5194/wes-2023-117, 2023
Revised manuscript accepted for WES
Short summary
OC6 Project Phase IV: Validation of Numerical Models for Novel Floating Offshore Wind Support Structures
Roger Bergua, Will Wiley, Amy Robertson, Jason Jonkman, Cédric Brun, Jean-Philippe Pineau, Quan Qian, Wen Maoshi, Alec Beardsell, Joshua Cutler, Fabio Pierella, Christian Anker Hansen, Wei Shi, Jie Fu, Lehan Hu, Prokopios Vlachogiannis, Christophe Peyrard, Christopher Simon Wright, Dallán Friel, Øyvind Waage Hanssen-Bauer, Carlos Renan dos Santos, Eelco Frickel, Hafizul Islam, Arjen Koop, Zhiqiang Hu, Jihuai Yang, Tristan Quideau, Violette Harnois, Kelsey Shaler, Stefan Netzband, Daniel Alarcón, Pau Trubat, Aengus Connolly, Séan B. Leen, and Oisín Conway
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-103,https://doi.org/10.5194/wes-2023-103, 2023
Revised manuscript accepted for WES
Short summary
Design optimization of offshore wind jacket piles by assessing support structure orientation relative to metocean conditions
Maciej M. Mroczek, Sanjay Raja Arwade, and Matthew A. Lackner
Wind Energ. Sci., 8, 807–817, https://doi.org/10.5194/wes-8-807-2023,https://doi.org/10.5194/wes-8-807-2023, 2023
Short summary
Comparison of optimal power production and operation of unmoored floating offshore wind turbines and energy ships
Patrick Connolly and Curran Crawford
Wind Energ. Sci., 8, 725–746, https://doi.org/10.5194/wes-8-725-2023,https://doi.org/10.5194/wes-8-725-2023, 2023
Short summary

Cited articles

Ågotnes, A., Genachte, A.-B., Ochagavia, R. M., Vergara, J. P., Castell, D., Tsouroukdissian, A. R., Korbijn, J., Bolleman, N. C. F., and Al., E.: Deep water: The next step for offshore wind, The European Wind Energy Association (EWEA), Brussels, Belgium, ISBN 978-2-930670-04-1, 2013. 
Allen, C., Viselli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G.: Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA 15 MW Wind Turbine, Golden, CO, https://doi.org/10.2172/1660012, 2020. 
Ashuri, T.: Beyond Classical Upscaling: Integrated Aeroservoelastic Design and Optimization of Large Offshore Wind Turbines, Delft University of Technology, 1–224, https://doi.org/10.4233/uuid:d10726c1-693c-408e-8505-dfca1810a59a, 2012. 
Beaubouef, B.: WindFloat Atlantic represents major offshore wind milestone: http://www.offshore-mag.com/renewable-energy/article/14188688/ (last access: 13 December 2022), 2020. 
Beiter, P., Musial, W., Smith, A., Kilcher, L., Damiani, R., Maness, M., Sirnivas, S., Stehly, T., Gevorgian, V., Mooney, M., and Scott, G.: A Spatial-Economic Cost- Reduction Pathway Analysis for 50 U.S. Offshore Wind Energy Development from 2015–2030, National Renewable Energy Laboratory (NREL), 214, https://doi.org/10.2172/1324526, 2016. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This paper presents an upscaling methodology for floating offshore wind turbine platforms using two case studies. The offshore wind turbine industry is trending towards fewer, larger offshore wind turbines within a farm, which is motivated by the per unit cost of a wind farm (including installation, interconnection, and maintenance costs). The results show the platform steel mass to be favorable with upscaling.
Altmetrics
Final-revised paper
Preprint