Articles | Volume 8, issue 12
https://doi.org/10.5194/wes-8-1873-2023
https://doi.org/10.5194/wes-8-1873-2023
Research article
 | 
14 Dec 2023
Research article |  | 14 Dec 2023

A new methodology for upscaling semi-submersible platforms for floating offshore wind turbines

Kaylie L. Roach, Matthew A. Lackner, and James F. Manwell

Related authors

Grand challenges in the design, manufacture, and operation of future wind turbine systems
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023,https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Design optimization of offshore wind jacket piles by assessing support structure orientation relative to metocean conditions
Maciej M. Mroczek, Sanjay Raja Arwade, and Matthew A. Lackner
Wind Energ. Sci., 8, 807–817, https://doi.org/10.5194/wes-8-807-2023,https://doi.org/10.5194/wes-8-807-2023, 2023
Short summary
Hurricane eyewall winds and structural response of wind turbines
Amber Kapoor, Slimane Ouakka, Sanjay R. Arwade, Julie K. Lundquist, Matthew A. Lackner, Andrew T. Myers, Rochelle P. Worsnop, and George H. Bryan
Wind Energ. Sci., 5, 89–104, https://doi.org/10.5194/wes-5-89-2020,https://doi.org/10.5194/wes-5-89-2020, 2020
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Offshore technology
Effect of rotor induction and peak shaving on energy performance and cost of stationary unmoored floating offshore wind turbines
Aurélien Babarit, Maximilien André, and Vincent Leroy
Wind Energ. Sci., 10, 1439–1449, https://doi.org/10.5194/wes-10-1439-2025,https://doi.org/10.5194/wes-10-1439-2025, 2025
Short summary
Experimental validation of parked loads for a floating vertical axis wind turbine: wind–wave basin tests
Md. Sanower Hossain and D. Todd Griffith
Wind Energ. Sci., 10, 1211–1230, https://doi.org/10.5194/wes-10-1211-2025,https://doi.org/10.5194/wes-10-1211-2025, 2025
Short summary
Spatio-temporal graph neural networks for power prediction in offshore wind farms using SCADA data
Simon Daenens, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 1137–1152, https://doi.org/10.5194/wes-10-1137-2025,https://doi.org/10.5194/wes-10-1137-2025, 2025
Short summary
Estimating microplastic emissions from offshore wind turbine blades in the Dutch North Sea
Marco Caboni, Anna Elisa Schwarz, Henk Slot, and Harald van der Mijle Meijer
Wind Energ. Sci., 10, 1123–1136, https://doi.org/10.5194/wes-10-1123-2025,https://doi.org/10.5194/wes-10-1123-2025, 2025
Short summary
A new gridded offshore wind profile product for US coasts using machine learning and satellite observations
James Frech, Korak Saha, Paige D. Lavin, Huai-Min Zhang, James Reagan, and Brandon Fung
Wind Energ. Sci., 10, 1077–1099, https://doi.org/10.5194/wes-10-1077-2025,https://doi.org/10.5194/wes-10-1077-2025, 2025
Short summary

Cited articles

Ågotnes, A., Genachte, A.-B., Ochagavia, R. M., Vergara, J. P., Castell, D., Tsouroukdissian, A. R., Korbijn, J., Bolleman, N. C. F., and Al., E.: Deep water: The next step for offshore wind, The European Wind Energy Association (EWEA), Brussels, Belgium, ISBN 978-2-930670-04-1, 2013. 
Allen, C., Viselli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G.: Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA 15 MW Wind Turbine, Golden, CO, https://doi.org/10.2172/1660012, 2020. 
Ashuri, T.: Beyond Classical Upscaling: Integrated Aeroservoelastic Design and Optimization of Large Offshore Wind Turbines, Delft University of Technology, 1–224, https://doi.org/10.4233/uuid:d10726c1-693c-408e-8505-dfca1810a59a, 2012. 
Beaubouef, B.: WindFloat Atlantic represents major offshore wind milestone: http://www.offshore-mag.com/renewable-energy/article/14188688/ (last access: 13 December 2022), 2020. 
Beiter, P., Musial, W., Smith, A., Kilcher, L., Damiani, R., Maness, M., Sirnivas, S., Stehly, T., Gevorgian, V., Mooney, M., and Scott, G.: A Spatial-Economic Cost- Reduction Pathway Analysis for 50 U.S. Offshore Wind Energy Development from 2015–2030, National Renewable Energy Laboratory (NREL), 214, https://doi.org/10.2172/1324526, 2016. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This paper presents an upscaling methodology for floating offshore wind turbine platforms using two case studies. The offshore wind turbine industry is trending towards fewer, larger offshore wind turbines within a farm, which is motivated by the per unit cost of a wind farm (including installation, interconnection, and maintenance costs). The results show the platform steel mass to be favorable with upscaling.
Share
Altmetrics
Final-revised paper
Preprint