Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-1005-2024
https://doi.org/10.5194/wes-9-1005-2024
Research article
 | 
24 Apr 2024
Research article |  | 24 Apr 2024

Experimental validation of a short-term damping estimation method for wind turbines in nonstationary operating conditions

Kristian Ladefoged Ebbehøj, Philippe Jacques Couturier, Lars Morten Sørensen, and Jon Juel Thomsen

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-40,https://doi.org/10.5194/wes-2024-40, 2024
Revised manuscript accepted for WES
Short summary
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024,https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Extending the dynamic wake meandering model in HAWC2Farm: a comparison with field measurements at the Lillgrund wind farm
Jaime Liew, Tuhfe Göçmen, Alan W. H. Lio, and Gunner Chr. Larsen
Wind Energ. Sci., 8, 1387–1402, https://doi.org/10.5194/wes-8-1387-2023,https://doi.org/10.5194/wes-8-1387-2023, 2023
Short summary

Cited articles

Au, S.-K.: Operational Modal Analysis: Modeling, Bayesian Inference, Uncertainty Laws, Springer, Singapore, ISBN 9789811041181, https://doi.org/10.1007/978-981-10-4118-1, 2017. a
Avendaño-Valencia, L. D. and Chatzi, E. N.: Multivariate GP-VAR models for robust structural identification under operational variability, Probabil. Eng. Mech., 60, 103035, https://doi.org/10.1016/j.probengmech.2020.103035, 2020. a
Avendaño-Valencia, L. D. and Fassois, S. D.: Stationary and non-stationary random vibration modelling and analysis for an operating wind turbine, Mech. Syst. Signal Process., 47, 263–285, 2014. a
Avendaño-Valencia, L. D., Chatzi, E. N., Koo, K. Y., and Brownjohn, J. M.: Gaussian process time-series models for structures under operational variability, Front. Built Environ., 3, 69, https://doi.org/10.3389/fbuil.2017.00069, 2017. a, b, c, d, e, f, g, h, i
Avendaño-Valencia, L. D., Chatzi, E. N., and Tcherniak, D.: Gaussian process models for mitigation of operational variability in the structural health monitoring of wind turbines, Mech. Syst. Signal Process., 142, 106686, https://doi.org/10.1016/j.ymssp.2020.106686, 2020. a
Download
Short summary
This paper experimentally validates a novel method for characterizing wind turbine dynamics...
Share
Altmetrics
Final-revised paper
Preprint