Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-1005-2024
https://doi.org/10.5194/wes-9-1005-2024
Research article
 | 
24 Apr 2024
Research article |  | 24 Apr 2024

Experimental validation of a short-term damping estimation method for wind turbines in nonstationary operating conditions

Kristian Ladefoged Ebbehøj, Philippe Jacques Couturier, Lars Morten Sørensen, and Jon Juel Thomsen

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison
Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke
Wind Energ. Sci., 9, 1747–1763, https://doi.org/10.5194/wes-9-1747-2024,https://doi.org/10.5194/wes-9-1747-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-40,https://doi.org/10.5194/wes-2024-40, 2024
Revised manuscript accepted for WES
Short summary
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024,https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Extending the dynamic wake meandering model in HAWC2Farm: a comparison with field measurements at the Lillgrund wind farm
Jaime Liew, Tuhfe Göçmen, Alan W. H. Lio, and Gunner Chr. Larsen
Wind Energ. Sci., 8, 1387–1402, https://doi.org/10.5194/wes-8-1387-2023,https://doi.org/10.5194/wes-8-1387-2023, 2023
Short summary

Cited articles

Au, S.-K.: Operational Modal Analysis: Modeling, Bayesian Inference, Uncertainty Laws, Springer, Singapore, ISBN 9789811041181, https://doi.org/10.1007/978-981-10-4118-1, 2017. a
Avendaño-Valencia, L. D. and Chatzi, E. N.: Multivariate GP-VAR models for robust structural identification under operational variability, Probabil. Eng. Mech., 60, 103035, https://doi.org/10.1016/j.probengmech.2020.103035, 2020. a
Avendaño-Valencia, L. D. and Fassois, S. D.: Stationary and non-stationary random vibration modelling and analysis for an operating wind turbine, Mech. Syst. Signal Process., 47, 263–285, 2014. a
Avendaño-Valencia, L. D., Chatzi, E. N., Koo, K. Y., and Brownjohn, J. M.: Gaussian process time-series models for structures under operational variability, Front. Built Environ., 3, 69, https://doi.org/10.3389/fbuil.2017.00069, 2017. a, b, c, d, e, f, g, h, i
Avendaño-Valencia, L. D., Chatzi, E. N., and Tcherniak, D.: Gaussian process models for mitigation of operational variability in the structural health monitoring of wind turbines, Mech. Syst. Signal Process., 142, 106686, https://doi.org/10.1016/j.ymssp.2020.106686, 2020. a
Download
Short summary
This paper experimentally validates a novel method for characterizing wind turbine dynamics based on vibration measurements. The dynamics of wind turbines can change over short time periods if the operational conditions change. In such cases, conventional methods are inadequate. The validation is performed with a controlled laboratory experiment and a full-scale wind turbine test. More accurate characterization could lead to more efficient wind turbine designs and in turn cheaper wind energy.
Altmetrics
Final-revised paper
Preprint