Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2235-2024
https://doi.org/10.5194/wes-9-2235-2024
Research article
 | 
27 Nov 2024
Research article |  | 27 Nov 2024

Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant

Peter Bachant, Peter Ireland, Brian Burrows, Chi Qiao, James Duncan, Danian Zheng, and Mohit Dua

Related subject area

Thematic area: Dynamics and control | Topic: Wind farm control
Evaluating the potential of a wake steering co-design for wind farm layout optimization through a tailored genetic algorithm
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024,https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary
On the importance of wind predictions in wake steering optimization
Elie Kadoche, Pascal Bianchi, Florence Carton, Philippe Ciblat, and Damien Ernst
Wind Energ. Sci., 9, 1577–1594, https://doi.org/10.5194/wes-9-1577-2024,https://doi.org/10.5194/wes-9-1577-2024, 2024
Short summary
On the power and control of a misaligned rotor – beyond the cosine law
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1547–1575, https://doi.org/10.5194/wes-9-1547-2024,https://doi.org/10.5194/wes-9-1547-2024, 2024
Short summary
Dynamic wind farm flow control using free-vortex wake models
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024,https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
The value of wake steering wind farm flow control in US energy markets
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024,https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary

Cited articles

Ahmad, T., Basit, A., Ahsan, M., Coupiac, O., Girard, N., Kazemtabrizi, B., and Matthews, P. C.: Implementation and analyses of yaw based coordinated control of wind farms, Energies, 12, 1266, https://doi.org/10.3390/en12071266, 2019. a, b
Andersson, L. E., Anaya-Lara, O., Tande, J. O., Merz, K. O., and Imsland, L.: Wind farm control – Part I: A review on control system concepts and structures, IET Renew. Power Generat., 15, 2085–2108, 2021. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. a, b, c
Bensason, D., Simley, E., Roberts, O., Fleming, P., Debnath, M., King, J., Bay, C., and Mudafort, R.: Evaluation of the potential for wake steering for U.S. land-based wind power plants, Journal of Renewable and Sustainable Energy, 13, 033303, https://doi.org/10.1063/5.0039325, 2021. a
Campagnolo, F., Weber, R., Schreiber, J., and Bottasso, C. L.: Wind tunnel testing of wake steering with dynamic wind direction changes, Wind Energ. Sci., 5, 1273–1295, https://doi.org/10.5194/wes-5-1273-2020, 2020. a, b
Download
Short summary
Intentional misalignment of upstream turbines in wind plants in order to steer wakes away from downstream turbines has been a topic of research interest for years but has not yet achieved widespread commercial adoption. We deploy one such wake steering system to a utility-scale wind plant and then create a model to predict plant behavior and enable successful control. We apply calibrations to a physics-based model and use machine learning to correct its outputs to improve predictive capability.
Altmetrics
Final-revised paper
Preprint