Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-235-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-235-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Developing a digital twin framework for wind tunnel testing: validation of turbulent inflow and airfoil load applications
Rishabh Mishra
CORRESPONDING AUTHOR
LHEEA – CNRS – Nantes Université, Centrale Nantes, 1 rue de la Noë, 44100 Nantes, France
Emmanuel Guilmineau
LHEEA – CNRS – Nantes Université, Centrale Nantes, 1 rue de la Noë, 44100 Nantes, France
Ingrid Neunaber
NTNU, Høgskoleringen 1, 7034 Trondheim, Norway
Caroline Braud
LHEEA – CNRS – Nantes Université, Centrale Nantes, 1 rue de la Noë, 44100 Nantes, France
Related authors
No articles found.
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attié, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci., 10, 1929–1942, https://doi.org/10.5194/wes-10-1929-2025, https://doi.org/10.5194/wes-10-1929-2025, 2025
Short summary
Short summary
A 3-year meteorological dataset from an operational wind farm of six 2 MW (megawatt) turbines has been made available. This includes a meteorological mast equipped with sonic anemometers at four different heights and radiometer measurements for atmospheric stability analysis. Simultaneously, supervisory control and data acquisition (SCADA) and the scanned geometry of the turbine blades are provided. This database has been made accessible to the research community (https://awit.aeris-data.fr).
Loïc Michel, Caroline Braud, Jean-Pierre Barbot, Franck Plestan, Dimitri Peaucelle, and Xavier Boucher
Wind Energ. Sci., 10, 177–191, https://doi.org/10.5194/wes-10-177-2025, https://doi.org/10.5194/wes-10-177-2025, 2025
Short summary
Short summary
This paper provides a comparison of three well-established controllers. The benchmark considered is an airfoil section equipped with local control systems. The objectives are to track the blade lift set by the operator and to test its robustness when a perturbation arises. Differences between controllers are underlined in terms of needed effort and quality of the tracking.
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 1771–1790, https://doi.org/10.5194/wes-7-1771-2022, https://doi.org/10.5194/wes-7-1771-2022, 2022
Short summary
Short summary
A wind turbine blade equipped with root spoilers is analysed using time domain aeroelastic simulations to assess the impact of passive devices on the turbine AEP and lifetime. A novel way to account for aerofoil-generated unsteadiness in the fatigue calculation is proposed and detailed. The outcome shows that spoilers, on average, can increase the AEP of the turbine. However, the structural impacts on the turbine can be severe if not accounted for initially in the turbine design.
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022, https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Short summary
The e-TellTale, a new aerodynamic sensor, has been tested in a large wind tunnel at CSTB. This sensor has been designed to detect the flow separation on wind turbine blades, which can cause energy production losses and increased aging of the blades. These wind tunnel tests highlighted the good ability of the e-TellTale to detect the flow separation and the influence of the size and location of the e-TellTale on the flow separation detection.
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022, https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary
Short summary
The spoiler is found to efficiently rearrange the mean flow seen by thick aerofoil: adding lift throughout the positive angles of attack, the drawback is a high drag penalty coupled with high unsteadiness of the aerodynamic forces. The impact of this type of excitation will be quantified further in terms of energy production and fatigue in future work.
Ingrid Neunaber, Joachim Peinke, and Martin Obligado
Wind Energ. Sci., 7, 201–219, https://doi.org/10.5194/wes-7-201-2022, https://doi.org/10.5194/wes-7-201-2022, 2022
Short summary
Short summary
Wind turbines are often clustered within wind farms. A consequence is that some wind turbines may be exposed to the wakes of other turbines, which reduces their lifetime due to the wake turbulence. Knowledge of the wake is thus important, and we carried out wind tunnel experiments to investigate the wakes. We show how models that describe wakes of bluff bodies can help to improve the understanding of wind turbine wakes and wind turbine wake models, particularly by including a virtual origin.
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Bérengère Podvin
Wind Energ. Sci., 6, 409–426, https://doi.org/10.5194/wes-6-409-2021, https://doi.org/10.5194/wes-6-409-2021, 2021
Short summary
Short summary
Monitoring the flow features over wind turbine blades is a challenging task that has become more and more crucial to monitor and/or operate wind turbine blades. This paper demonstrates the ability of an innovative sensor to detect these features over wind turbine blades. The spatiotemporal description of the flow over the surface has been measured over an oscillating blade section and the strip displacement was compared, showing the ability of the sensor to detect stall.
Cited articles
Abbott, I. H. and Von Doenhoff, A. E.: Theory of wing sections: including a summary of airfoil data, Courier Corporation, New York, USA, ISBN 978-0486605869, 2012. a
Bak, C.: Airfoil Design, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-31307-4_3, pp. 95–122, 2022. a
Batchelor, G. K. and Townsend, A. A.: Decay of isotropic turbulence in the initial period, P. Roy. Soc. Lond. A Mat., 193, 539–558, https://doi.org/10.1098/rspa.1948.0061, 1948. a, b, c, d
Blackmore, T., Batten, W., and Bahaj, A.: Inlet grid-generated turbulence for large-eddy simulations, Int. J. Comput. Fluid D., 27, 307–315, 2013. a
Brunner, C. E., Kiefer, J., Hansen, M. O. L., and Hultmark, M.: Study of Reynolds number effects on the aerodynamics of a moderately thick airfoil using a high-pressure wind tunnel, Exp. Fluids, 62, 178, https://doi.org/10.1007/s00348-021-03267-8, 2021. a
Devinant, P., Laverne, T., and Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence, J. Wind Eng. Ind. Aerod., 90, 689–707, https://doi.org/10.1016/S0167-6105(02)00162-9, 2002. a, b
Djenidi, L.: Lattice–Boltzmann simulation of grid-generated turbulence, J. Fluid Mech., 552, 13–35, https://doi.org/10.1017/S002211200600869X, 2006. a
Eça, L., Lopes, R., Vaz, G., Baltazar, J., and Rijpkema, D.: Validation exercises of mathematical models for the prediction of transitional flows, in: Proceedings of 31st Symposium on Naval Hydrodynamics, 11–16 September, Berkeley, 2016. a
Frisch, U.: Turbulence: the legacy of AN Kolmogorov, Cambridge University Press, Cambridge, United Kingdom, https://doi.org/10.1017/CBO9781139170666, 1995. a
George, W. K.: The decay of homogeneous isotropic turbulence, Phys. Fluids A-Fluid, 4, 1492–1509, https://doi.org/10.1063/1.858423, 1992. a
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H.: A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A-Fluid, 3, 1760–1765, https://doi.org/10.1063/1.857955, 1991. a
Gilling, L., Sørensen, N., and Davidson, L.: Detached eddy simulations of an airfoil in turbulent inflow, in: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA, 5 January 2009–8 January 2009, https://doi.org/10.2514/6.2009-270, p. 270, 2009. a
Hinze, J.: Turbulence, McGraw-Hill, New York, ISBN 9780070290372, 1975. a
Hultmark, M. and Smits, A. J.: Temperature corrections for constant temperature and constant current hot-wire anemometers, Meas. Sci. Technol., 21, 105404, https://doi.org/10.1088/0957-0233/21/10/105404, 2010. a
Krogstad, P.-Å. and Davidson, P.: Is grid turbulence Saffman turbulence?, J. Fluid Mech., 642, 373–394, https://doi.org/10.1017/S0022112009991807, 2009. a, b, c
Kurian, T. and Fransson, J. H.: Grid-generated turbulence revisited, Fluid Dyn. Res., 41, 021403, https://doi.org/10.1088/0169-5983/41/2/021403, 2009. a, b, c
Laizet, S. and Vassilicos, J. C.: DNS of fractal-generated turbulence, Flow Turbul. Combust., 87, 673–705, https://doi.org/10.1007/s10494-011-9351-2, 2011. a
Laizet, S., Vassilicos, J., and Cambon, C.: Interscale energy transfer in decaying turbulence and vorticity–strain-rate dynamics in grid-generated turbulence, Fluid Dyn. Res., 45, 061408, https://doi.org/10.1088/0169-5983/45/6/061408, 2013. a
Li, L. and Hearst, R. J.: The influence of freestream turbulence on the temporal pressure distribution and lift of an airfoil, J. Wind Eng. Ind. Aerod., 209, 104456, https://doi.org/10.1016/j.jweia.2020.104456, 2021. a
License, C. C.: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), https://creativecommons.org/licenses/by-nc-nd/4.0/ (last access: 27 April 2023). a
Liu, L., Zhang, L., Wu, B., and Chen, B.: Numerical and Experimental Studies on Grid-Generated Turbulence in Wind Tunnel, Journal of Engineering Science & Technology Review, 10, 159–169, https://doi.org/10.25103/jestr.103.21, 2017. a
Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598–1605, https://doi.org/10.2514/3.12149, 1994. a
Miller, M. A., Kiefer, J., Westergaard, C., Hansen, M. O. L., and Hultmark, M.: Horizontal axis wind turbine testing at high Reynolds numbers, Physical Review Fluids, 4, 110504, https://doi.org/10.1103/PhysRevFluids.4.110504, 2019. a
Mishra, R., Neunaber, I., Guilmineau, E., and Braud, C.: Wind tunnel study: is turbulent intensity a good candidate to help in bypassing low Reynolds number effects on 2d blade sections?, J. Phys. Conf. Ser., 2265, 022095, https://doi.org/10.1088/1742-6596/2265/2/022095, 2022. a, b
Mishra, R., Braud, C., Neunaber, I., and Guilmineau, E.: Low Reynolds wind tunnel tests and URANS simulations of a uniform grid and a 2MW wind tubine blade section at 1/10 scale, https://doi.org/10.25326/554, 2023. a
Mydlarski, L. and Warhaft, Z.: On the onset of high-Reynolds-number grid-generated wind tunnel turbulence, J. Fluid Mech., 320, 331–368, https://doi.org/10.1017/S0022112096007562, 1996. a
Nagata, K., Suzuki, H., Sakai, Y., Hayase, T., and Kubo, T.: Direct numerical simulation of turbulent mixing in grid-generated turbulence, Phys. Scripta, 2008, 014054, https://doi.org/10.1088/0031-8949/2008/T132/014054, 2008. a
Neunaber, I. and Braud, C.: Aerodynamic behavior of an airfoil under extreme wind conditions, J. Phys. Conf. Ser., 1618, 032035, https://doi.org/10.1088/1742-6596/1618/3/032035, 2020a. a
Neunaber, I. and Braud, C.: First characterization of a new perturbation system for gust generation: the chopper, Wind Energ. Sci., 5, 759–773, https://doi.org/10.5194/wes-5-759-2020, 2020b. a
Neunaber, I., Danbon, F., Soulier, A., Voisin, D., Guilmineau, E., Delpech, P., Courtine, S., Taymans, C., and Braud, C.: Wind tunnel study on natural instability of the normal force on a full-scale wind turbine blade section at Reynolds number 4.7⋅106, Wind Energy, 25, 1332–1342, https://doi.org/10.1002/we.2732, 2022. a, b, c
Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., and Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids, 23, 085106, https://doi.org/10.1063/1.3623274, 2011. a
Nietiedt, S., Wester, T. T. B., Langidis, A., Kröger, L., Rofallski, R., Göring, M., Kühn, M., Gülker, G., and Luhmann, T.: A Wind Tunnel Setup for Fluid-Structure Interaction Measurements Using Optical Methods, Sensors, 22, 5014, https://doi.org/10.3390/s22135014, 2022. a
Panda, J., Mitra, A., Joshi, A., and Warrior, H.: Experimental and numerical analysis of grid generated turbulence with and without mean strain, Exp. Therm. Fluid Sci., 98, 594–603, https://doi.org/10.1016/j.expthermflusci.2018.07.001, 2018. a
Rieth, M., Proch, F., Stein, O., Pettit, M., and Kempf, A.: Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow, Comput. Fluids, 99, 172–181, https://doi.org/10.1016/j.compfluid.2014.04.018, 2014. a
Saffman, P.: The large-scale structure of homogeneous turbulence, J. Fluid Mech., 27, 581–593, https://doi.org/10.1017/S0022112067000552, 1967. a
Sicot, C., Aubrun, S., Loyer, S., and Devinant, P.: Unsteady characteristics of the static stall of an airfoil subjected to freestream turbulence level up to 16 %, Exp. Fluids, 41, 641–648, https://doi.org/10.1007/s00348-006-0187-9, 2006. a, b
Sinhuber, M., Bodenschatz, E., and Bewley, G. P.: Decay of turbulence at high Reynolds numbers, Phys. Rev. Lett., 114, 034501, https://doi.org/10.1103/PhysRevLett.114.034501, 2015. a, b
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Speziale, C. G. and Bernard, P. S.: The energy decay in self-preserving isotropic turbulence revisited, J. Fluid Mech., 241, 645–667, https://doi.org/10.1017/S0022112092002180, 1992. a, b
Stewart, R. W. and Townsend, A. A.: Similarity and self-preservation in isotropic turbulence, Philos. T. R. Soc. S.-A, 243, 359–386, https://doi.org/10.1098/rsta.1951.0007, 1951. a
Suzuki, H., Nagata, K., Sakai, Y., and Hayase, T.: Direct numerical simulation of turbulent mixing in regular and fractal grid turbulence, Phys. Scripta, 2010, 014065, https://doi.org/10.1088/0031-8949/2010/T142/014065, 2010. a
Torrano, I., Tutar, M., Martinez-Agirre, M., Rouquier, A., Mordant, N., and Bourgoin, M.: Comparison of experimental and RANS-based numerical studies of the decay of grid-generated turbulence, J. Fluid. Eng.-T. ASME, 137, FE-14-1408, https://doi.org/10.1115/1.4029726, 2015. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Laird, D., V. Lehtomäki, J. K. L., Manwell, J., M. Marquis, C. M., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Rodrigo, J. S., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, 6464, https://doi.org/10.1126/science.aau2027, 2019. a
Versteeg, H. and Malalasekera, W.: An introduction to Computational Fluid Dynamics, 1995. a
Wackers, J., Deng, G., Leroyer, A., Queutey, P., and Visonneau, M.: Adaptive grid refinement for hydrodynamic flows, Comput. Fluids, 55, 85–100, https://doi.org/10.1016/j.compfluid.2011.11.004, 2012. a
Wei, N. J., Kissing, J., Wester, T. T. B., Wegt, S., Schiffmann, K., Jakirlic, S., Hölling, M., Peinke, J., and Tropea, C.: Insights into the periodic gust response of airfoils, J. Fluid Mech., 876, 237–263, https://doi.org/10.1017/jfm.2019.537, 2019. a
Wester, T. T., Kröger, L., Langidis, A., Nietiedt, S., Rofallski, R., Goering, M., Luhmann, T., Peinke, J., and Gülker, G.: Fluid-Structure Interaction Experiments on a Scaled Model Wind Turbine Under Tailored Inflow Conditions Using PIV and Photogrammetry, in: 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics, 11–14 July 2022, Lisbon, Portugal, 2022. a
Wilcox, D. C.: Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., 26, 1299–1310, https://doi.org/10.2514/3.10041, 1988. a, b
Zhou, Y. and Speziale, C. G.: Advances in the fundamental aspects of turbulence: energy transfer, interacting scales, and self-preservation in isotropic decay, Appl. Mech. Rev, 51, 267–301, https://doi.org/10.1115/1.3099004, 1998. a
Short summary
To investigate the impact of turbulence on aerodynamic forces, we first model turbulent kinetic energy decay theoretically using the Taylor length scale and employ this model to create a digital wind tunnel replica for simulating grid-generated turbulence. Experimental validation shows good alignment among theory, simulations, and experiments, paving the way for aerodynamic simulations. Finally, we successfully use the digital replica to obtain force coefficients for a 2D rotor blade section.
To investigate the impact of turbulence on aerodynamic forces, we first model turbulent kinetic...
Altmetrics
Final-revised paper
Preprint