Articles | Volume 9, issue 1
https://doi.org/10.5194/wes-9-235-2024
https://doi.org/10.5194/wes-9-235-2024
Research article
 | 
24 Jan 2024
Research article |  | 24 Jan 2024

Developing a digital twin framework for wind tunnel testing: validation of turbulent inflow and airfoil load applications

Rishabh Mishra, Emmanuel Guilmineau, Ingrid Neunaber, and Caroline Braud

Related authors

Three-year database of atmospheric measurements combined with associated operating parameters from a wind farm of 2MW turbines and rotor geometry
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attie, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-12,https://doi.org/10.5194/wes-2025-12, 2025
Preprint under review for WES
Short summary
Comparison of different feedback controllers on an airfoil benchmark
Loïc Michel, Caroline Braud, Jean-Pierre Barbot, Franck Plestan, Dimitri Peaucelle, and Xavier Boucher
Wind Energ. Sci., 10, 177–191, https://doi.org/10.5194/wes-10-177-2025,https://doi.org/10.5194/wes-10-177-2025, 2025
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 2: Impact on energy production and turbine lifetime
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 1771–1790, https://doi.org/10.5194/wes-7-1771-2022,https://doi.org/10.5194/wes-7-1771-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Drop-size-dependent effects in leading-edge rain erosion and their impact on erosion-safe mode operation
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci., 10, 315–346, https://doi.org/10.5194/wes-10-315-2025,https://doi.org/10.5194/wes-10-315-2025, 2025
Short summary
Characterization of dynamic stall of a wind turbine airfoil with a high Reynolds number
Hye Rim Kim, Jasson A. Printezis, Jan Dominik Ahrens, Joerg R. Seume, and Lars Wein
Wind Energ. Sci., 10, 161–175, https://doi.org/10.5194/wes-10-161-2025,https://doi.org/10.5194/wes-10-161-2025, 2025
Short summary
Numerical analysis of transonic flow over the FFA-W3-211 wind turbine tip airfoil
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci., 10, 103–116, https://doi.org/10.5194/wes-10-103-2025,https://doi.org/10.5194/wes-10-103-2025, 2025
Short summary
Characterization of vortex-shedding regimes and lock-in response of a wind turbine airfoil with two high-fidelity simulation approaches
Ricardo Fernandez-Aldama, George Papadakis, Oscar Lopez-Garcia, Sergio Avila-Sanchez, Vasilis A. Riziotis, Alvaro Cuerva-Tejero, and Cristobal Gallego-Castillo
Wind Energ. Sci., 10, 17–39, https://doi.org/10.5194/wes-10-17-2025,https://doi.org/10.5194/wes-10-17-2025, 2025
Short summary
Aerodynamic interaction of rain and wind turbine blades: the significance of droplet slowdown and deformation for leading-edge erosion
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci., 9, 2333–2357, https://doi.org/10.5194/wes-9-2333-2024,https://doi.org/10.5194/wes-9-2333-2024, 2024
Short summary

Cited articles

Abbott, I. H. and Von Doenhoff, A. E.: Theory of wing sections: including a summary of airfoil data, Courier Corporation, New York, USA, ISBN 978-0486605869, 2012. a
Bailly, C. and Comte-Bellot, G.: Homogeneous and Isotropic Turbulence, in: Turbulence, Springer, Switzerland, ISBN 978-3-319-16159-4, pp. 129–177, 2015. a, b, c, d
Bak, C.: Airfoil Design, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-31307-4_3, pp. 95–122, 2022. a
Batchelor, G. K. and Townsend, A. A.: Decay of isotropic turbulence in the initial period, P. Roy. Soc. Lond. A Mat., 193, 539–558, https://doi.org/10.1098/rspa.1948.0061, 1948. a, b, c, d
Blackmore, T., Batten, W., and Bahaj, A.: Inlet grid-generated turbulence for large-eddy simulations, Int. J. Comput. Fluid D., 27, 307–315, 2013. a
Download
Short summary
To investigate the impact of turbulence on aerodynamic forces, we first model turbulent kinetic energy decay theoretically using the Taylor length scale and employ this model to create a digital wind tunnel replica for simulating grid-generated turbulence. Experimental validation shows good alignment among theory, simulations, and experiments, paving the way for aerodynamic simulations. Finally, we successfully use the digital replica to obtain force coefficients for a 2D rotor blade section.
Share
Altmetrics
Final-revised paper
Preprint