Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-2079-2025
https://doi.org/10.5194/wes-10-2079-2025
Research article
 | 
25 Sep 2025
Research article |  | 25 Sep 2025

Effect of blockage on wind turbine power and wake development

Olivier Ndindayino, Augustin Puel, and Johan Meyers

Related authors

Bayesian uncertainty quantification of engineering models for wind-farm atmosphere interaction
Frederik Aerts, Koen Devesse, and Johan Meyers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-196,https://doi.org/10.5194/wes-2025-196, 2025
Preprint under review for WES
Short summary
An inter-comparison study on the impact of atmospheric boundary layer height on gigawatt-scale wind plant performance
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88,https://doi.org/10.5194/wes-2025-88, 2025
Revised manuscript under review for WES
Short summary
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
A large-eddy simulation analysis of collective wind farm axial-induction set points in the presence of blockage
Théo Delvaux and Johan Meyers
Wind Energ. Sci., 10, 613–630, https://doi.org/10.5194/wes-10-613-2025,https://doi.org/10.5194/wes-10-613-2025, 2025
Short summary
Turbine- and farm-scale power losses in wind farms: an alternative to wake and farm blockage losses
Andrew Kirby, Takafumi Nishino, Luca Lanzilao, Thomas D. Dunstan, and Johan Meyers
Wind Energ. Sci., 10, 435–450, https://doi.org/10.5194/wes-10-435-2025,https://doi.org/10.5194/wes-10-435-2025, 2025
Short summary

Cited articles

Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in conventionally neutral wind farms, J. Fluid Mech., 814, 95–130, https://doi.org/10.1017/jfm.2017.11, 2017. a, b, c, d, e
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299, 2018. a, b, c
Allaerts, D. and Meyers, J.: Sensitivity and feedback of wind-farm-induced gravity waves, J. Fluid Mech., 862, 990–1028, https://doi.org/10.1017/jfm.2018.969, 2019. a, b, c, d
Bleeg, J. and Montavon, C.: Blockage effects in a single row of wind turbines, J. Phys. Conf. Ser., 2265, 022001, https://doi.org/10.1088/1742-6596/2265/2/022001, 2022. a
Bleeg, J., Purcell, M., Ruisi, R., and Traiger, E.: Wind Farm Blockage and the Consequences of Neglecting Its Impact on Energy Production, Energies, 11, 1609, https://doi.org/10.3390/en11061609, 2018. a
Download
Short summary
We study how flow blockage improves wind-farm efficiency using large-eddy simulations and develop an analytical model to better predict turbine power under blockage. We find that blockage enhances turbine power and thrust by creating a favourable pressure drop across the row, reducing near-wake deficit while inducing an unfavourable pressure increase downstream, which has minimal direct impact on far-wake development.
Share
Altmetrics
Final-revised paper
Preprint