Articles | Volume 10, issue 5
https://doi.org/10.5194/wes-10-857-2025
https://doi.org/10.5194/wes-10-857-2025
Research article
 | 
06 May 2025
Research article |  | 06 May 2025

Gaussian mixture autoencoder for uncertainty-aware damage identification in a floating offshore wind turbine

Ana Fernandez-Navamuel, Nicolas Gorostidi, David Pardo, Vincenzo Nava, and Eleni Chatzi

Related authors

On the Potential of Aerodynamic Pressure Measurements for Structural Damage Detection
Philip Imanuel Franz, Imad Abdallah, Gregory Duthé, Julien Deparday, Ali Jafarabadi, Alexander Popp, Sarah Barber, and Eleni Chatzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-26,https://doi.org/10.5194/wes-2025-26, 2025
Preprint under review for WES
Short summary
Knowledge engineering for wind energy
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024,https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Towards a dynamic earthquake risk framework for Switzerland
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024,https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Development of a wireless, non-intrusive, MEMS-based pressure and acoustic measurement system for large-scale operating wind turbine blades
Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duthé, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna Müller
Wind Energ. Sci., 7, 1383–1398, https://doi.org/10.5194/wes-7-1383-2022,https://doi.org/10.5194/wes-7-1383-2022, 2022
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Offshore technology
Effect of Rotor Design on Energy Performance and Cost of Stationary Unmoored Floating Offshore Wind Turbines
Aurélien Babarit, Maximilien André, and Vincent Leroy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-15,https://doi.org/10.5194/wes-2025-15, 2025
Revised manuscript accepted for WES
Short summary
Estimating microplastics emissions from offshore wind turbine blades in the Dutch North Sea
Marco Caboni, Anna Elisa Schwarz, Henk Slot, and Harald van der Mijle Meijer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-175,https://doi.org/10.5194/wes-2024-175, 2024
Revised manuscript accepted for WES
Short summary
Experimental Validation of Parked Loads for a Floating Vertical Axis Wind Turbine: Wind-Wave Basin Tests
Md Sanower Hossain and D. Todd Griffith
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-156,https://doi.org/10.5194/wes-2024-156, 2024
Revised manuscript accepted for WES
Short summary
Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads in extreme idling conditions
Will Wiley, Jason Jonkman, and Amy Robertson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-130,https://doi.org/10.5194/wes-2024-130, 2024
Revised manuscript accepted for WES
Short summary
Spatio-Temporal Graph Neural Networks for Power Prediction in Offshore Wind Farms Using SCADA Data
Simon Daenens, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-113,https://doi.org/10.5194/wes-2024-113, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Adler, J. and Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks, Inverse Probl., 33, 124007, https://doi.org/10.1088/1361-6420/aa9581, 2017. a
Agarap, A. F.: Deep learning using rectified linear units (relu), arXiv [preprint], https://doi.org/10.48550/arXiv.1803.08375, 2018. a
Aldirany, Z.: Accurate Approximations of the Wave Equation: From Spectral Element Methods to Deep Learning Approaches, PhD thesis, University of Montreal, Montreal, Canada, https://publications.polymtl.ca/58312/ (last access: 8 April 2025​​​​​​​), 2024. a
Alyaev, S. and Elsheikh, A. H.: Direct multi-modal inversion of geophysical logs using deep learning, Earth and Space Science, 9, e2021EA002186, https://doi.org/10.1029/2021EA002186, 2022. a
Download
Short summary
This work employs deep neural networks to identify damage in the mooring system of a floating offshore wind turbine using measurements from the platform response. We account for the effect of uncertainty caused by the existence of multiple solutions using a Gaussian mixture model to describe the damage condition estimates. The results reveal the capability of the methodology to discover the uncertainty in the assessment, which increases as the instrumentation system becomes more limited.
Share
Altmetrics
Final-revised paper
Preprint