Articles | Volume 11, issue 1
https://doi.org/10.5194/wes-11-13-2026
https://doi.org/10.5194/wes-11-13-2026
Research article
 | 
07 Jan 2026
Research article |  | 07 Jan 2026

Evaluation of a high-resolution regional climate simulation for surface and hub-height wind climatology over North America

Kyle Peco, Jiali Wang, Chunyong Jung, Gökhan Sever, Lindsay Sheridan, Jeremy Feinstein, Rao Kotamarthi, Caroline Draxl, Ethan Young, Avi Purkayastha, and Andrew Kumler

Related authors

Bias correcting regional scale Earth system model projections: novel approach using empirical mode decomposition
Arkaprabha Ganguli, Jeremy Feinstein, Ibraheem Raji, Akintomide Akinsanola, Connor Aghili, Chunyong Jung, Jordan Branham, Tom Wall, Whitney Huang, and Rao Kotamarthi
Geosci. Model Dev., 18, 8313–8332, https://doi.org/10.5194/gmd-18-8313-2025,https://doi.org/10.5194/gmd-18-8313-2025, 2025
Short summary
Performance of reanalysis and mesoscale models for wind resource assessment off the coast of Hawaii
Lindsay M. Sheridan, Raghavendra Krishnamurthy, Tien Manh Nguyen, Yi-Leng Chen, William I. Gustafson Jr., Ye Liu, Feng Hsiao, Rob K. Newsom, Preston Spicer, Evgueni Kassianov, Mikhail Pekour, Nicola Bodini, and Mark Severy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-167,https://doi.org/10.5194/wes-2025-167, 2025
Revised manuscript under review for WES
Short summary
Understanding Cluster Wake-Induced Energy Losses off the U.S. East Coast
Geng Xia, Mike Optis, Georgios Deskos, Michael Sinner, Daniel Mulas Hernando, Julie Kay Lundquist, Andrew Kumler, Miguel Sanchez Gomez, Paul Fleming, and Walter Musial
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-154,https://doi.org/10.5194/wes-2025-154, 2025
Revised manuscript under review for WES
Short summary
Performance of wind assessment datasets in United States coastal areas
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, Ethan Young, and Rao Kotamarthi
Wind Energ. Sci., 10, 1551–1574, https://doi.org/10.5194/wes-10-1551-2025,https://doi.org/10.5194/wes-10-1551-2025, 2025
Short summary
Evaluating the potential of short-term instrument deployment to improve distributed wind resource assessment
Lindsay M. Sheridan, Dmitry Duplyakin, Caleb Phillips, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, and Larry K. Berg
Wind Energ. Sci., 10, 1451–1470, https://doi.org/10.5194/wes-10-1451-2025,https://doi.org/10.5194/wes-10-1451-2025, 2025
Short summary

Cited articles

Akinsanola, A. A., Jung, C., Wang, J., and Kotamarthi, V. R.: Evaluation of precipitation across the contiguous United States, Alaska, and Puerto Rico in multi-decadal convection-permitting simulations, Scientific Reports, 14, 1, https://doi.org/10.1038/s41598-024-51714-3, 2024. 
Carlson, T. N. and Boland, F. E.: Analysis of urban-rural canopy using a surface heat flux/temperature model, Journal of Applied Meteorology, 17, 998–1014, https://doi.org/10.1175/1520-0450(1978)017<0998:AOURCU>2.0.CO;2, 1978. 
Chen, T. C., Collet, F., and Di Luca, A.: Evaluation of ERA5 precipitation and 10-m wind speed associated with extratropical cyclones using station data over North America, International Journal of Climatology, 44, 1610–1625, https://doi.org/10.1002/joc.8339, 2024. 
Couto, A. and Estanqueiro, A.: Enhancing wind power forecast accuracy using the weather research and forecasting numerical model-based features and artificial neural networks, Renewable Energy, 201, https://doi.org/10.1016/j.renene.2022.11.022, 2022. 
Di Santo, D., He, C., Chen, F., and Giovannini, L.: ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool, Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, 2025. 
Download
Short summary
This study presents a new wind dataset, generated by a convection-permitting regional climate model across North America. By validating the dataset against wind observations, we have demonstrated that this dataset captures the wind patterns over complex terrains more realistically than the European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis version 5 (ERA5). Additionally, this study quantifies model uncertainty in wind speed, comparing it against interannual variability, to better inform wind farm siting. 
Share
Altmetrics
Final-revised paper
Preprint