Articles | Volume 3, issue 2
https://doi.org/10.5194/wes-3-729-2018
https://doi.org/10.5194/wes-3-729-2018
Research article
 | 
19 Oct 2018
Research article |  | 19 Oct 2018

Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events

Jakob Ilsted Bech, Charlotte Bay Hasager, and Christian Bak

Related authors

Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: a study of aerodynamic degradation and operational influences
Tahir H. Malik and Christian Bak
Wind Energ. Sci., 9, 2017–2037, https://doi.org/10.5194/wes-9-2017-2024,https://doi.org/10.5194/wes-9-2017-2024, 2024
Short summary
Full Scale Wind Turbine Performance Assessment: A Customised, Sensor-Augmented Aeroelastic Modelling Approach
Tahir H. Malik and Christian Bak
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-49,https://doi.org/10.5194/wes-2024-49, 2024
Revised manuscript under review for WES
Short summary
Challenges in Detecting Wind Turbine Power Loss: The Effects of Blade Erosion, Turbulence and Time Averaging
Tahir H. Malik and Christian Bak
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-35,https://doi.org/10.5194/wes-2024-35, 2024
Preprint under review for WES
Short summary
Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11,https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript under review for AMT
Short summary
The impact of Aeolus winds on near-surface wind forecasts over tropical ocean and high-latitude regions
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913, https://doi.org/10.5194/amt-16-3901-2023,https://doi.org/10.5194/amt-16-3901-2023, 2023
Short summary

Related subject area

Offshore technology
A framework for simultaneous design of wind turbines and cable layout in offshore wind
Juan-Andrés Pérez-Rúa and Nicolaos Antonio Cutululis
Wind Energ. Sci., 7, 925–942, https://doi.org/10.5194/wes-7-925-2022,https://doi.org/10.5194/wes-7-925-2022, 2022
Short summary
Alignment of scanning lidars in offshore wind farms
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022,https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Damping identification of offshore wind turbines using operational modal analysis: a review
Aemilius A. W. van Vondelen, Sachin T. Navalkar, Alexandros Iliopoulos, Daan C. van der Hoek, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 161–184, https://doi.org/10.5194/wes-7-161-2022,https://doi.org/10.5194/wes-7-161-2022, 2022
Short summary
FAST.Farm load validation for single wake situations at alpha ventus
Matthias Kretschmer, Jason Jonkman, Vasilis Pettas, and Po Wen Cheng
Wind Energ. Sci., 6, 1247–1262, https://doi.org/10.5194/wes-6-1247-2021,https://doi.org/10.5194/wes-6-1247-2021, 2021
Short summary
Exploitation of the far-offshore wind energy resource by fleets of energy ships – Part 2: Updated ship design and cost of energy estimate
Aurélien Babarit, Félix Gorintin, Pierrick de Belizal, Antoine Neau, Giovanni Bordogna, and Jean-Christophe Gilloteaux
Wind Energ. Sci., 6, 1191–1204, https://doi.org/10.5194/wes-6-1191-2021,https://doi.org/10.5194/wes-6-1191-2021, 2021
Short summary

Cited articles

Adler, W. F.: Waterdrop Impact Modeling, Wear, 186–187, 341–51, 1995. 
Adler, W. F.: Rain impact retrospective and vision for the future, Wear, 233–235, 25–38, 1999. 
Amirzadeh, B., Louhghalam, A., Raessi, M., and Tootkaboni, M.: A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: Stochastic rain texture model and drop impact simulations, J. Wind Eng. Ind. Aerod., 163, 44–54, https://doi.org/10.1016/j.jweia.2016.12.007, 2017a. 
Amirzadeh, B., Louhghalam, A., Raessi, M., and Tootkaboni, M.: A computational framework for the analysis of rain-induced erosion in wind turbine blades, part II: Drop impact-induced stresses and blade coating fatigue life, J. Wind Eng. Ind. Aerod., 163, 33–43, https://doi.org/10.1016/j.jweia.2016.12.006, 2017b. 
ASTM: ASTM G73-10 – Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus, Astm, 1–19, https://doi.org/10.1520/G0073-10R17, 2017 
Download
Short summary
Rain erosion on wind turbine blades is a severe challenge for wind energy today. It causes significant losses in power production, and large sums are spent on inspection and repair. Blade life can be extended, power production increased and maintenance costs reduced by rotor speed reduction at extreme precipitation events. Combining erosion test results, meteorological data and models of blade performance, we show that a turbine control strategy is a promising new weapon against blade erosion.
Altmetrics
Final-revised paper
Preprint