Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1237–1252, 2020
https://doi.org/10.5194/wes-5-1237-2020

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 5, 1237–1252, 2020
https://doi.org/10.5194/wes-5-1237-2020

Research article 01 Oct 2020

Research article | 01 Oct 2020

Comparison of electrical collection topologies for multi-rotor wind turbines

Paul Pirrie et al.

Related subject area

Electricity conversion, forecasting, grid & market integration
Power fluctuations in high-installation- density offshore wind fleets
Juan Pablo Murcia Leon, Matti Juhani Koivisto, Poul Sørensen, and Philippe Magnant
Wind Energ. Sci., 6, 461–476, https://doi.org/10.5194/wes-6-461-2021,https://doi.org/10.5194/wes-6-461-2021, 2021
Short summary
Future economic perspective and potential revenue of non-subsidized wind turbines in Germany
Lucas Blickwedel, Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 177–190, https://doi.org/10.5194/wes-6-177-2021,https://doi.org/10.5194/wes-6-177-2021, 2021
Short summary
Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes
Mathieu Pichault, Claire Vincent, Grant Skidmore, and Jason Monty
Wind Energ. Sci., 6, 131–147, https://doi.org/10.5194/wes-6-131-2021,https://doi.org/10.5194/wes-6-131-2021, 2021
Short summary
North Sea region energy system towards 2050: integrated offshore grid and sector coupling drive offshore wind power installations
Matti Koivisto, Juan Gea-Bermúdez, Polyneikis Kanellas, Kaushik Das, and Poul Sørensen
Wind Energ. Sci., 5, 1705–1712, https://doi.org/10.5194/wes-5-1705-2020,https://doi.org/10.5194/wes-5-1705-2020, 2020
Short summary
Generic characterization of electrical test benches for AC- and HVDC-connected wind power plants
Behnam Nouri, Ömer Göksu, Vahan Gevorgian, and Poul Ejnar Sørensen
Wind Energ. Sci., 5, 561–575, https://doi.org/10.5194/wes-5-561-2020,https://doi.org/10.5194/wes-5-561-2020, 2020
Short summary

Cited articles

ABB: Product note 9AKK105293 Rev B.: High speed PM generator series for full converter concept from 1.5 MW upwards, available at: https://new.abb.com/motors-generators/generators/generators-for-wind-turbines (last access: 10 August 2020), 2012. a
ABB: 3AUA0000231755 Rev A: ABB wind turbine converters – ACS880, 800 kW to 8 MW, available at: https://new.abb.com/power-converters-inverters/wind-turbines (last access: 10 August 2020), 2018. a, b
ABB: 3BHS351272E01 Rev C: ABB wind turbine converters PCS6000, available at: https://new.abb.com/power-converters-inverters/wind-turbines (last access: 10 August 2020), 2019. a, b
Bahirat, H. J., Mork, B. A., and Hoidalen, H. K.: Comparison of wind farm topologies for offshore applications, in: 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 1–8, https://doi.org/10.1109/PESGM.2012.6344689, 2012. a, b
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M.: Description of the DTU 10 MW Reference Wind Turbine, DTU Wind Energy Report-I-0092, DTU Wind Energy, 2013. a
Download
Short summary
Multi-rotor wind turbines are an innovative solution to achieving cost-effective large-scale wind turbines. They utilize a large number of small rotors connected to one support structure instead of one large rotor. Benefits include reduction in cost, transport and installation simplicity, modular design, and standardization. This work compares different electrical systems in terms of cost, mass and efficiency and finds a star-type system (each rotor has its own cable) to be the most suitable.