Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1731–1741, 2020
https://doi.org/10.5194/wes-5-1731-2020
Wind Energ. Sci., 5, 1731–1741, 2020
https://doi.org/10.5194/wes-5-1731-2020
Research article
16 Dec 2020
Research article | 16 Dec 2020

A simple methodology to detect and quantify wind power ramps

Bedassa R. Cheneka et al.

Related authors

Modelling the impact of trapped lee waves on offshore wind farm power output
Sarah J. Ollier and Simon J. Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-83,https://doi.org/10.5194/wes-2022-83, 2022
Preprint under review for WES
Short summary
Grand Challenges: Wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O’Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-66,https://doi.org/10.5194/wes-2022-66, 2022
Revised manuscript accepted for WES
Short summary
Wind turbine drivetrains: state-of-the-art technologies and future development trends
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022,https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Clustering wind profile shapes to estimate airborne wind energy production
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020,https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary
Investigating the impact of atmospheric stability on thunderstorm outflow winds and turbulence
Patrick Hawbecker, Sukanta Basu, and Lance Manuel
Wind Energ. Sci., 3, 203–219, https://doi.org/10.5194/wes-3-203-2018,https://doi.org/10.5194/wes-3-203-2018, 2018

Related subject area

Environmental and socio-economic aspects
Detecting and characterizing simulated sea breezes over the US northeastern coast with implications for offshore wind energy
Geng Xia, Caroline Draxl, Michael Optis, and Stephanie Redfern
Wind Energ. Sci., 7, 815–829, https://doi.org/10.5194/wes-7-815-2022,https://doi.org/10.5194/wes-7-815-2022, 2022
Short summary
Artificial hard-substrate colonisation in the offshore Hywind Scotland Pilot Park
Rikard Karlsson, Malin Tivefälth, Iris Duranović, Svante Martinsson, Ane Kjølhamar, and Kari Mette Murvoll
Wind Energ. Sci., 7, 801–814, https://doi.org/10.5194/wes-7-801-2022,https://doi.org/10.5194/wes-7-801-2022, 2022
Short summary
Experimental investigation of aerodynamic characteristics of bat carcasses after collision with a wind turbine
Shivendra Prakash and Corey D. Markfort
Wind Energ. Sci., 5, 745–758, https://doi.org/10.5194/wes-5-745-2020,https://doi.org/10.5194/wes-5-745-2020, 2020
Short summary

Cited articles

Bianco, L., Djalalova, I. V., Wilczak, J. M., Cline, J., Calvert, S., Konopleva-Akish, E., Finley, C., and Freedman, J.: A wind energy ramp tool and metric for measuring the skill of numerical weather prediction models, Weather Forecast., 31, 1137–1156, 2016. a, b, c
Borgnat, P. and Flandrin, P.: Stationarization via surrogates, J. Stat. Mech.: Theory and Experiment, 2009, P01001, https://doi.org/10.1088/1742-5468/2009/01/p01001, 2009. a
Borgnat, P., Flandrin, P., Honeine, P., Richard, C., and Xiao, J.: Testing stationarity with surrogates: A time-frequency approach, IEEE Transactions on Signal Processing, 58, 3459–3470, 2010. a
Bossavy, A., Girard, R., and Kariniotakis, G.: Forecasting Uncertainty Related to Ramps of Wind Power Production, European Wind Energy Conference and Exhibition 2010, EWEC 2010, April 2010, Warsaw, Poland, 9 pp., ISBN 9781617823107.Hal-00765885f, 2010. a, b
Coughlin, K., Murthi, A., and Eto, J.: Multi-scale analysis of wind power and load time series data, Renew. Energ., 68, 494–504, 2014. a
Download
Short summary
Wind power ramps have important characteristics for the planning and integration of wind power production into electricity. We present a new and simple algorithm that detects wind power ramp characteristics. The algorithm classifies wind power production into ramp-ups, ramp-downs, and no-ramps; and it can detect wind power ramp characteristics that show a temporal increasing (decreasing) power capacity.