Articles | Volume 5, issue 4
https://doi.org/10.5194/wes-5-1731-2020
https://doi.org/10.5194/wes-5-1731-2020
Research article
 | 
16 Dec 2020
Research article |  | 16 Dec 2020

A simple methodology to detect and quantify wind power ramps

Bedassa R. Cheneka, Simon J. Watson, and Sukanta Basu

Related authors

Condition monitoring of wind turbine drivetrains: State-of-the-art technologies, recent trends, and future outlook
Kayacan Kestel, Xavier Chesterman, Donatella Zappalá, Simon Watson, Mingxin Li, Edward Hart, James Carroll, Yolanda Vidal, Amir R. Nejad, Shawn Sheng, Yi Guo, Matthias Stammler, Florian Wirsing, Ahmed Saleh, Nico Gregarek, Thao Baszenski, Thomas Decker, Martin Knops, Georg Jacobs, Benjamin Lehmann, Florian König, Ines Pereira, Pieter-Jan Daems, Cédric Peeters, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-168,https://doi.org/10.5194/wes-2025-168, 2025
Preprint under review for WES
Short summary
Modeling frontal low-level jets and associated extreme wind power ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci., 10, 1575–1609, https://doi.org/10.5194/wes-10-1575-2025,https://doi.org/10.5194/wes-10-1575-2025, 2025
Short summary
Investigating the relationship between simulation parameters and flow variables in simulating atmospheric gravity waves for wind energy applications
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci., 10, 1167–1185, https://doi.org/10.5194/wes-10-1167-2025,https://doi.org/10.5194/wes-10-1167-2025, 2025
Short summary
Simulating run-to-failure SCADA time series to enhance wind turbine fault detection and prognosis
Ali Eftekhari Milani, Donatella Zappalá, Francesco Castellani, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-62,https://doi.org/10.5194/wes-2025-62, 2025
Revised manuscript accepted for WES
Short summary
Wind turbine wake dynamics subjected to atmospheric gravity waves: A measurement-driven large-eddy simulation study
Dachuan Feng and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-52,https://doi.org/10.5194/wes-2025-52, 2025
Revised manuscript has not been submitted
Short summary

Cited articles

Bianco, L., Djalalova, I. V., Wilczak, J. M., Cline, J., Calvert, S., Konopleva-Akish, E., Finley, C., and Freedman, J.: A wind energy ramp tool and metric for measuring the skill of numerical weather prediction models, Weather Forecast., 31, 1137–1156, 2016. a, b, c
Borgnat, P. and Flandrin, P.: Stationarization via surrogates, J. Stat. Mech.: Theory and Experiment, 2009, P01001, https://doi.org/10.1088/1742-5468/2009/01/p01001, 2009. a
Borgnat, P., Flandrin, P., Honeine, P., Richard, C., and Xiao, J.: Testing stationarity with surrogates: A time-frequency approach, IEEE Transactions on Signal Processing, 58, 3459–3470, 2010. a
Bossavy, A., Girard, R., and Kariniotakis, G.: Forecasting Uncertainty Related to Ramps of Wind Power Production, European Wind Energy Conference and Exhibition 2010, EWEC 2010, April 2010, Warsaw, Poland, 9 pp., ISBN 9781617823107.Hal-00765885f, 2010. a, b
Coughlin, K., Murthi, A., and Eto, J.: Multi-scale analysis of wind power and load time series data, Renew. Energ., 68, 494–504, 2014. a
Download
Short summary
Wind power ramps have important characteristics for the planning and integration of wind power production into electricity. We present a new and simple algorithm that detects wind power ramp characteristics. The algorithm classifies wind power production into ramp-ups, ramp-downs, and no-ramps; and it can detect wind power ramp characteristics that show a temporal increasing (decreasing) power capacity.
Share
Altmetrics
Final-revised paper
Preprint