Articles | Volume 5, issue 4
https://doi.org/10.5194/wes-5-1731-2020
https://doi.org/10.5194/wes-5-1731-2020
Research article
 | 
16 Dec 2020
Research article |  | 16 Dec 2020

A simple methodology to detect and quantify wind power ramps

Bedassa R. Cheneka, Simon J. Watson, and Sukanta Basu

Related authors

Dries Allaerts, 1989–2024
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024,https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Modelling Frontal Low-Level Jets and Associated Extreme Wind Power Ramps over the North Sea
Harish Baki, Sukanta Basu, and George Lavidas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-99,https://doi.org/10.5194/wes-2024-99, 2024
Preprint under review for WES
Short summary
Multi-objective calibration of vertical-axis wind turbine controllers: balancing aero-servo-elastic performance and noise
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024,https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Analysis and multi-objective optimisation of wind turbine torque control strategies
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023,https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset
Serkan Kartal, Sukanta Basu, and Simon J. Watson
Wind Energ. Sci., 8, 1533–1551, https://doi.org/10.5194/wes-8-1533-2023,https://doi.org/10.5194/wes-8-1533-2023, 2023
Short summary

Related subject area

Environmental and socio-economic aspects
Detecting and characterizing simulated sea breezes over the US northeastern coast with implications for offshore wind energy
Geng Xia, Caroline Draxl, Michael Optis, and Stephanie Redfern
Wind Energ. Sci., 7, 815–829, https://doi.org/10.5194/wes-7-815-2022,https://doi.org/10.5194/wes-7-815-2022, 2022
Short summary
Artificial hard-substrate colonisation in the offshore Hywind Scotland Pilot Park
Rikard Karlsson, Malin Tivefälth, Iris Duranović, Svante Martinsson, Ane Kjølhamar, and Kari Mette Murvoll
Wind Energ. Sci., 7, 801–814, https://doi.org/10.5194/wes-7-801-2022,https://doi.org/10.5194/wes-7-801-2022, 2022
Short summary
Experimental investigation of aerodynamic characteristics of bat carcasses after collision with a wind turbine
Shivendra Prakash and Corey D. Markfort
Wind Energ. Sci., 5, 745–758, https://doi.org/10.5194/wes-5-745-2020,https://doi.org/10.5194/wes-5-745-2020, 2020
Short summary

Cited articles

Bianco, L., Djalalova, I. V., Wilczak, J. M., Cline, J., Calvert, S., Konopleva-Akish, E., Finley, C., and Freedman, J.: A wind energy ramp tool and metric for measuring the skill of numerical weather prediction models, Weather Forecast., 31, 1137–1156, 2016. a, b, c
Borgnat, P. and Flandrin, P.: Stationarization via surrogates, J. Stat. Mech.: Theory and Experiment, 2009, P01001, https://doi.org/10.1088/1742-5468/2009/01/p01001, 2009. a
Borgnat, P., Flandrin, P., Honeine, P., Richard, C., and Xiao, J.: Testing stationarity with surrogates: A time-frequency approach, IEEE Transactions on Signal Processing, 58, 3459–3470, 2010. a
Bossavy, A., Girard, R., and Kariniotakis, G.: Forecasting Uncertainty Related to Ramps of Wind Power Production, European Wind Energy Conference and Exhibition 2010, EWEC 2010, April 2010, Warsaw, Poland, 9 pp., ISBN 9781617823107.Hal-00765885f, 2010. a, b
Coughlin, K., Murthi, A., and Eto, J.: Multi-scale analysis of wind power and load time series data, Renew. Energ., 68, 494–504, 2014. a
Download
Short summary
Wind power ramps have important characteristics for the planning and integration of wind power production into electricity. We present a new and simple algorithm that detects wind power ramp characteristics. The algorithm classifies wind power production into ramp-ups, ramp-downs, and no-ramps; and it can detect wind power ramp characteristics that show a temporal increasing (decreasing) power capacity.
Altmetrics
Final-revised paper
Preprint