Articles | Volume 6, issue 1 
            
                
                    
            
            
            https://doi.org/10.5194/wes-6-131-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-131-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes
Mathieu Pichault
CORRESPONDING AUTHOR
                                            
                                    
                                            Department of Mechanical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
                                        
                                    Claire Vincent
                                            School of Earth Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
                                        
                                    Grant Skidmore
                                            Department of Mechanical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
                                        
                                    Jason Monty
                                            Department of Mechanical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
                                        
                                    Related authors
No articles found.
Claire L. Vincent, Adam Nahar, and Kelvin Say
                                    Wind Energ. Sci., 10, 2435–2447, https://doi.org/10.5194/wes-10-2435-2025, https://doi.org/10.5194/wes-10-2435-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                The most important days for wind energy to make a large contribution to the electricity supply are when electricity demand is high. We examined the wind resource of southeast Australia on these days. We found that most hot high-demand days are influenced by a similar weather pattern, while cold high-demand days can be cold, wet, and windy or associated with widespread light winds. These results are important when considering the types of weather that could influence future wind energy.
                                            
                                            
                                        Claire L. Vincent and Andrew J. Dowdy
                                    Atmos. Chem. Phys., 24, 10209–10223, https://doi.org/10.5194/acp-24-10209-2024, https://doi.org/10.5194/acp-24-10209-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We investigate how wind speed at the height of a wind turbine changes during El Niño and La Niña years and with season and time of day in southeastern Australia. We found that El Niño and La Niña can cause average wind speed differences of around 1 m s-1 in some regions. The highest wind speeds occur in the afternoon or evening around mountains or the coast and during the night for inland areas.  The results help show how placement of wind turbines can help balance electricity generation.
                                            
                                            
                                        Cited articles
                        
                        Berson, F. A., Reid, D. G., and Troup, A. J.: The Summer Cool Change of
South-Eastern Australia, Technical Paper 8, Commonwealth
Scientific and Industrial Research Organization, Melbourne, Australia,
1957. a
                    
                
                        
                        Bianco, L., Djalalova, I. V., Wilczak, J. M., Cline, J., Calvert, S.,
Konopleva-Akish, E., Finley, C., and Freedman, J.: A Wind Energy Ramp
Tool and Metric for Measuring the Skill of Numerical Weather
Prediction Models, Weather Forecast., 31, 1137–1156,
https://doi.org/10.1175/WAF-D-15-0144.1, 2016. a
                    
                
                        
                        Bitsa, E., Flocas, H., Kouroutzoglou, J., Hatzaki, M., Rudeva, I., and
Simmonds, I.: Development of a Front Identification Scheme for
Compiling a Cold Front Climatology of the Mediterranean, Climate,
7, 130, https://doi.org/10.3390/cli7110130, 2019. a
                    
                
                        
                        BOM: Bureau of Meteorology Sheoaks Weather Station,
available at: http://www.bom.gov.au/places/vic/she-oaks/, last access: 10 September 2020a. a
                    
                
                        
                        BOM: Bureau of Meteorology MSLP Charts, http://www.bom.gov.au/australia/charts/archive/, last access: 2 December 2020b. a
                    
                
                        
                        Bradford, K. T., Carpenter, D. R. L., and Shaw, B. L.: Forecasting Southern
Plains Wind Ramp Events Using the WRF Model at 3-Km, The 9th
American Meteorological Society Anual Meeting, 17 January 2010, p. 10, Altanta, GA, 2010. a
                    
                
                        
                        Couto, A., Costa, P., Rodrigues, L., Lopes, V. V., and Estanqueiro, A.: Impact
of Weather Regimes on the Wind Power Ramp Forecast in Portugal,
IEEE T. Sustain. Energ., 6, 934–942,
https://doi.org/10.1109/TSTE.2014.2334062, 2015. a
                    
                
                        
                        Cui, M., Ke, D., Sun, Y., Gan, D., Zhang, J., and Hodge, B.-M.: Wind Power
Ramp Event Forecasting Using a Stochastic Scenario Generation Method,
IEEE T. Sustain. Energ., 6, 422–433,
https://doi.org/10.1109/TSTE.2014.2386870, 2015. a
                    
                
                        
                        Cutler, N.: Characterising the Uncertainty in Potential Large Rapid
Changes in Wind Power Generation, Ph.D. thesis, University of New South
Whales, Sydney, 2009. a
                    
                
                        
                        Cutler, N., Kay, M., Jacka, K., and Nielsen, T. S.: Detecting, Categorizing and
Forecasting Large Ramps in Wind Farm Power Output Using Meteorological
Observations and WPPT, Wind Energy, 10, 453–470, https://doi.org/10.1002/we.235,
2007. a, b
                    
                
                        
                        Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim Reanalysis: Configuration and Performance
of the Data Assimilation System, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
                    
                
                        
                        Deppe, A. J., Gallus, W. A., and Takle, E. S.: A WRF Ensemble for
Improved Wind Speed Forecasts at Turbine Height, Weather Forecast., 28, 212–228, https://doi.org/10.1175/WAF-D-11-00112.1, 2012. a, b
                    
                
                        
                        Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979. a
                    
                
                        
                        EIA, U. E. I. A.: Annual Energy Outlook 2019 with Projections to 2050,
Tech. rep., U.S Department of Energy, Washington, USA, 2019. a
                    
                
                        
                        Ferreira, C., Gama, J., Moreira-Matias, L., Botterud, A., and Wang, J.: A Survey on Wind Power Ramp
Forecasting, Tech. Rep. ANL/DIS-10-13, Argonne National Laboratory, Illinois, USA, 2010. a
                    
                
                        
                        Ferreira, C. A., Gama, J., Santos Costa, V., Miranda, V., and Botterud, A.:
Predicting Ramp Events with a Stream-Based HMM Framework, in:
Discovery Science, edited by: Ganascia, J.-G., Lenca, P., and Petit,
J.-M., Lecture Notes in Computer Science, 224–238, Springer
Berlin Heidelberg, Berlin, Germany, 2012. a, b, c
                    
                
                        
                        Fournier, M. B. and Haerter, J. O.: Tracking the Gust Fronts of
Convective Cold Pools, J. Geophys. Res.-Atmos., 124,
11103–11117, https://doi.org/10.1029/2019JD030980, 2019. a
                    
                
                        
                        Gallego, C., Cuerva, Á., and Costa, A.: Detecting and Characterising Ramp
Events in Wind Power Time Series, J. Phys. Conf. Ser., 555,
012040, https://doi.org/10.1088/1742-6596/555/1/012040, 2014. a, b
                    
                
                        
                        Gallego, C., Cuerva-Tejero, A., and Lopez-Garcia, O.: A Review on the
Recent History of Wind Power Ramp Forecasting, Renewable and Sustainable
Energy Reviews, 52, 1148–1157, https://doi.org/10.1016/j.rser.2015.07.154,
2015a. a, b, c
                    
                
                        
                        Gallego, C., García-Bustamante, E., Cuerva, Á., and Navarro, J.:
Identifying Wind Power Ramp Causes from Multivariate Datasets: A
Methodological Proposal and Its Application to Reanalysis Data, IET Renew.
Power Gen., 9, 867–875, https://doi.org/10.1049/iet-rpg.2014.0457,
2015b. a
                    
                
                        
                        Greaves, B., Collins, J., Parkes, J., and Tindal, A.: Temporal Forecast
Uncertainty for Ramp Events, Wind Engineering, 33, 309–320, https://doi.org/10.1260/030952409789685681, 2009. a
                    
                
                        
                        GWEC: Global Wind Report 2018, Annual Market Update, Tech. rep.,
GWEC, Brussels, Belgium, 2019. a
                    
                
                        
                        Hannesdóttir, Á. and Kelly, M.: Detection and Characterization of
Extreme Wind Speed Ramps, Wind Energy Science, 4, 385–396,
https://doi.org/10.5194/wes-4-385-2019, 2019. a, b, c
                    
                
                        
                        IEC: Wind Turbines – Power Performance Measurements of Electricity
Producing Wind Turbines, International Standard IEC 61400-12-1:2005(E),
International Electrotechnical Commission, Geneva, Switzerland, 2005. a
                    
                
                        
                        Kamath, C.: Understanding Wind Ramp Events through Analysis of Historical Data, IEEE PES T&D 2010, 1–6, IEEE, New Orleans, LA, USA,
https://doi.org/10.1109/TDC.2010.5484508, 2010. a, b
                    
                
                        
                        Kariniotakis, G.: Renewable Energy Forecasting: From Models to Applications,
Woodhead Publishing, Cambridge, UK, 2017. a
                    
                
                        
                        Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps,
Biol. Cybern., 43, 59–69, https://doi.org/10.1007/BF00337288, 1982. a
                    
                
                        
                        Lacerda, M., Couto, A., and Estanqueiro, A.: Wind Power
Ramps Driven by Windstorms and Cyclones, Energies, 10, 1475,
https://doi.org/10.3390/en10101475, 2017. a
                    
                
                        
                        Lange, M., Focken, U., and Lenz, A.: Ramp Event Forecasting –
Practical Experiences in the USA and Australia, 9th
International Workshop on Large-Scale Integration of Wind Power into Power
Systems as Well as on Transmission Networks for Offshore Wind Power Plants,
89–92, 18 October 2010, Québec, Canada, 2010. a
                    
                
                        
                        Magerman, B.: Short-Term Wind Power Forecasts Using Doppler Lidar,
Ph.D. thesis, Arizona State University, Tempe, USA, 2014. a
                    
                
                        
                        Martínez-Arellano, G., Nolle, L., Cant, R., Lotfi, A., and Windmill, C.:
Characterisation of Large Changes in Wind Power for the
Day-Ahead Market Using a Fuzzy Logic Approach, KI – Künstliche
Intelligenz, 28, 239–253, https://doi.org/10.1007/s13218-014-0322-3, 2014. a
                    
                
                        
                        Mishra, S., Leinakse, M., and Palu, I.: Wind Power Variation Identification
Using Ramping Behavior Analysis, Enrgy. Proced., 141, 565–571,
https://doi.org/10.1016/j.egypro.2017.11.075, 2017. a, b, c
                    
                
                        
                        Percival, D. B. and Walden, A. T.: Wavelet Methods for Time Series
Analysis by Donald B. Percival,
https://doi.org/10.1017/CBO9780511841040, 2000. a, b
                    
                
                        
                        Potter, B. E. and Hernandez, J. R.: Downdraft Outflows: Climatological
Potential to Influence Fire Behaviour, Int. J. Wildland
Fire, 26, 685, https://doi.org/10.1071/WF17035, 2017. a, b
                    
                
                        
                        Press, A. A.: Victoria Hit by Destructive Thunderstorms as Bureau Warns NSW
Is Next, The Guardian, available at: https://www.theguardian.com/weather/2018/dec/15/victoria-braces-for-more-flooding-and-thunderstorms (last access: 28 April 2020, Sydney, Australia, 2018. a
                    
                
                        
                        Sherry, M. and Rival, D.: Meteorological Phenomena Associated with Wind-Power
Ramps Downwind of Mountainous Terrain, J. Renew. Sustain,
Ener., 7, 033101, https://doi.org/10.1063/1.4919021, 2015. a, b, c
                    
                
                        
                        Simmonds, I., Keay, K., and Tristram Bye, J. A.: Identification and
Climatology of Southern Hemisphere Mobile Fronts in a Modern
Reanalysis, J. Climate, 25, 1945–1962,
https://doi.org/10.1175/JCLI-D-11-00100.1, 2012. a, b
                    
                
                        
                        Steiner, A., Köhler, C., Metzinger, I., Braun, A., Zirkelbach, M., Ernst,
D., Tran, P., and Ritter, B.: Critical Weather Situations for Renewable
Energies – Part A: Cyclone Detection for Wind Power,
Renew. Energ., 101, 41–50, https://doi.org/10.1016/j.renene.2016.08.013, 2017. a
                    
                
                        
                        Tayal, D.: Achieving High Renewable Energy Penetration in Western Australia
Using Data Digitisation and Machine Learning, Renewable and Sustainable
Energy Reviews, 80, 1537–1543, https://doi.org/10.1016/j.rser.2017.07.040, 2017. a
                    
                
                        
                        Treinish, L. A. and Treinish, L. A.: Precision Wind Power Forecasting via
Coupling of Turbulent-Scale Atmospheric Modelling with Machine
Learning Methods, 93rd American Meteorological Society Annual
Meeting, AMS, 9 January 2013, Austin, USA, 2013. a
                    
                
                        
                        Trombe, P.-J., Pinson, P., and Madsen, H.: A General Probabilistic
Forecasting Framework for Offshore Wind Power Fluctuations, Energies,
5, 621–657, https://doi.org/10.3390/en5030621, 2012. a
                    
                
                        
                        UNFCCC: Adoption of the Paris Agreement, Tech. rep., UNFCCC, Paris,
2015. a
                    
                
                        
                        van Kooten, G. C.: Wind Power: The Economic Impact of Intermittency, Letters
in Spatial and Resource Sciences, 3, 1–17, https://doi.org/10.1007/s12076-009-0031-y,
2010. a
                    
                
                        
                        Vincent, C. L., Hahmann, A. N., and Kelly, M. C.: Idealized Mesoscale Model
Simulations of Open Cellular Convection Over the Sea,
Bound.-Lay. Meteorol., 142, 103–121, https://doi.org/10.1007/s10546-011-9664-7,
2012. a
                    
                
                        
                        Worsnop, R. P., Scheuerer, M., Hamill, T. M., and Lundquist, J. K.: Generating
Wind Power Scenarios for Probabilistic Ramp Event Prediction Using
Multivariate Statistical Post-Processing, Wind Energy Science, 3, 371–393,
https://doi.org/10.5194/wes-3-371-2018, 2018. a
                    
                
                        
                        Wurth, I., Ellinghaus, S., Wigger, M., Niemeier, M. J., Clifton, A., and Cheng,
P. W.: Forecasting Wind Ramps: Can Long-Range Lidar Increase Accuracy?,
J. Phys. Conf. Ser., 1102, 012013,
https://doi.org/10.1088/1742-6596/1102/1/012013, 2018. a
                    
                
                        
                        Wurth, I., Valldecabres, L., Simon, E., Möhrlen, C., Uzunoğlu, B.,
Gilbert, C., Giebel, G., Schlipf, D., and Kaifel, A.: Minute-Scale
Forecasting of Wind Power–Results from the
Collaborative Workshop of IEA Wind Task 32 and 36, Energies, 12, 712,
https://doi.org/10.3390/en12040712, 2019. a
                    
                
                        
                        Zack, J., Mendes, J., Bessa, R., Keko, H., Miranda, V., Ferreira, C., Gama, J., Botterud, A., Zhou, Z., and Wang, J.: Development and Testing of Improved Statistical Wind Power
Forecasting Methods, Tech. Rep. ANL/DIS-11-7, Argonne National
Laboratory, Illinois, USA, 2011. a
                    
                
                        
                        Zhang, J., Florita, A., Hodge, B.-M., and Freedman, J.: Ramp Forecasting
Performance From Improved Short-Term Wind Power Forecasting, in: Volume
2A: 40th Design Automation Conference, p. V02AT03A022, ASME,
Buffalo, New York, USA, https://doi.org/10.1115/DETC2014-34775, 2014.
 a
                    
                
                        
                        Zhang, J., Cui, M., Hodge, B.-M., Florita, A., and Freedman, J.: Ramp
Forecasting Performance from Improved Short-Term Wind Power Forecasting over
Multiple Spatial and Temporal Scales, Energy, 122, 528–541,
https://doi.org/10.1016/j.energy.2017.01.104, 2017. a, b
                    
                Short summary
                    This paper assesses the behaviour and causality of sudden variations in wind power generation over a short period of time, also called "ramp events". It is shown, amongst other things, that ramps at the study site are mostly associated with frontal activity. Overall, the research contributes to a better understanding of the drivers and behaviours of wind power ramps at the wind farm scale, beneficial to ramp forecasting and ramp modelling.
                    This paper assesses the behaviour and causality of sudden variations in wind power generation...
                    
                Altmetrics
                
                Final-revised paper
            
            
                    Preprint
                
                     
 
                        
                                         
                        
                                         
                     
                     
                    