Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1421-2022
https://doi.org/10.5194/wes-7-1421-2022
Research article
 | 
13 Jul 2022
Research article |  | 13 Jul 2022

High-fidelity aeroelastic analyses of wind turbines in complex terrain: fluid–structure interaction and aerodynamic modeling

Giorgia Guma, Philipp Bucher, Patrick Letzgus, Thorsten Lutz, and Roland Wüchner

Related authors

Computational fluid dynamics studies on wind turbine interactions with the turbulent local flow field influenced by complex topography and thermal stratification
Patrick Letzgus, Giorgia Guma, and Thorsten Lutz
Wind Energ. Sci., 7, 1551–1573, https://doi.org/10.5194/wes-7-1551-2022,https://doi.org/10.5194/wes-7-1551-2022, 2022
Short summary
Aeroelastic analysis of wind turbines under turbulent inflow conditions
Giorgia Guma, Galih Bangga, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 6, 93–110, https://doi.org/10.5194/wes-6-93-2021,https://doi.org/10.5194/wes-6-93-2021, 2021
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Investigation of blade flexibility effects on the loads and wake of a 15 MW wind turbine using a flexible actuator line method
Francois Trigaux, Philippe Chatelain, and Grégoire Winckelmans
Wind Energ. Sci., 9, 1765–1789, https://doi.org/10.5194/wes-9-1765-2024,https://doi.org/10.5194/wes-9-1765-2024, 2024
Short summary
On optimizing the sensor spacing for pressure measurements on wind turbine airfoils
Erik K. Fritz, Christopher L. Kelley, and Kenneth A. Brown
Wind Energ. Sci., 9, 1713–1726, https://doi.org/10.5194/wes-9-1713-2024,https://doi.org/10.5194/wes-9-1713-2024, 2024
Short summary
Experimental analysis of a horizontal-axis wind turbine with swept blades using PIV data
Erik Fritz, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1617–1629, https://doi.org/10.5194/wes-9-1617-2024,https://doi.org/10.5194/wes-9-1617-2024, 2024
Short summary
Aerodynamic characterisation of a thrust-scaled IEA 15 MW wind turbine model: experimental insights using PIV data
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1173–1187, https://doi.org/10.5194/wes-9-1173-2024,https://doi.org/10.5194/wes-9-1173-2024, 2024
Short summary
Going beyond BEM with BEM: an insight into dynamic inflow effects on floating wind turbines
Francesco Papi, Jason Jonkman, Amy Robertson, and Alessandro Bianchini
Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024,https://doi.org/10.5194/wes-9-1069-2024, 2024
Short summary

Cited articles

Bangga, G., Weihing, P., Lutz, T., and Krämer, E.: Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations, J. Mech. Sci. Technol., 31, 2359–2364, 2017. a
Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wüchner, R., and Bletzinger, K.-U.: 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades, Int. J. Numer. Meth. Fl., 65, 236–253, 2011. a
Bazilevs, Y., Hsu, M.-C., and Scott, M.: Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Method. Appl. M., 249, 28–41, 2012. a
Bechmann, A. and Sørensen, N. N.: Hybrid RANS/LES method for wind flow over complex terrain, Wind Energy, 13, 36–50, 2010. a
Brodeur, P. and Masson, C.: Numerical site calibration over complex terrain, J. Sol. Energy Eng., 130, 3, 2008. a
Short summary
Wind turbine aeroelasticity is becoming more and more important because turbine sizes are increasingly leading to more slender blades. On the other hand, complex terrains are of interest because they are far away from urban areas. These regions are characterized by low velocities and high turbulence and are mostly influenced by the presence of forest, and that is why it is necessary to develop high-fidelity tools to correctly simulate the wind turbine's response.
Altmetrics
Final-revised paper
Preprint