Articles | Volume 8, issue 8
https://doi.org/10.5194/wes-8-1277-2023
https://doi.org/10.5194/wes-8-1277-2023
Research article
 | 
17 Aug 2023
Research article |  | 17 Aug 2023

Bayesian method for estimating Weibull parameters for wind resource assessment in a tropical region: a comparison between two-parameter and three-parameter Weibull distributions

Mohammad Golam Mostafa Khan and Mohammed Rafiuddin Ahmed

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023,https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Investigating the physical mechanisms that modify wind plant blockage in stable boundary layers
Miguel Sanchez Gomez, Julie K. Lundquist, Jeffrey D. Mirocha, and Robert S. Arthur
Wind Energ. Sci., 8, 1049–1069, https://doi.org/10.5194/wes-8-1049-2023,https://doi.org/10.5194/wes-8-1049-2023, 2023
Short summary
Annual Variability of Wake Impacts on Mid-Atlantic Offshore Wind Plant Deployments
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-38,https://doi.org/10.5194/wes-2023-38, 2023
Revised manuscript accepted for WES
Short summary
Offshore wind energy forecasting sensitivity to sea surface temperature input in the Mid-Atlantic
Stephanie Redfern, Mike Optis, Geng Xia, and Caroline Draxl
Wind Energ. Sci., 8, 1–23, https://doi.org/10.5194/wes-8-1-2023,https://doi.org/10.5194/wes-8-1-2023, 2023
Short summary
Lifetime prediction of turbine blades using global precipitation products from satellites
Merete Badger, Haichen Zuo, Ásta Hannesdóttir, Abdalmenem Owda, and Charlotte Hasager
Wind Energ. Sci., 7, 2497–2512, https://doi.org/10.5194/wes-7-2497-2022,https://doi.org/10.5194/wes-7-2497-2022, 2022
Short summary

Cited articles

Ahmed, M. R.: Sample Data for Pentecost, Rakiraki and Rarotonga (Appendix 3), http://repository.usp.ac.fj/id/eprint/14126 (last access: 14 August 2023), 2016. 
Aukitino, T., Khan, M. G. M, and Ahmed, M. R.: Wind energy resource assessment for Kiribati with a comparison of different methods of determining Weibull parameters, Energ. Convers. Manage., 151, 641–660, https://doi.org/10.1016/j.enconman.2017.09.027, 2017. 
Azad, A. K., Rasul, M. G., and Yusaf, T.: Statistical diagnosis of the Best Weibull methods for wind power assessment for agricultural applications, Energies, 7, 3056–3085, https://doi.org/10.3390/en7053056, 2014. 
Carta, J. A., Ramirez, P., and Velazquez, S.: A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands, Renewable and sustainable energy reviews, 13, 933–955, https://doi.org/10.1016/j.rser.2008.05.005, 2009. 
Casella, G. and Berger, R. L.: Statistical inference, 2nd edn., Cengage Learning, ISBN 978-0-534-24312-8, 2020. 
Download
Short summary
A robust technique for wind resource assessment with a Bayesian approach for estimating Weibull parameters is proposed. Research conducted using seven sites' data in the tropical region from 1° N to 21° S revealed that the three-parameter (3-p) Weibull distribution with a non-zero shift parameter is a better fit for wind data that have a higher percentage of low wind speeds. Wind data with higher wind speeds are a special case of the 3-p distribution. This approach gives accurate results.
Altmetrics
Final-revised paper
Preprint