D'Antuono, P., Weijtjens, W., and Devriendt, C.: On the minimum required sampling frequency for reliable fatigue lifetime estimation in structural health monitoring. How much is enough?, in: Proceedings of the 10th European Workshop on Structural Health Monitoring – EWSHM 2022, Springer International Publishing, Palermo, Italy, https://doi.org/10.1007/978-3-031-07254-3_14, 2022.
DNV: DNV GL-ST-0437: Loads and Site Conditions for Wind Turbines, DNV GL, Oslo, Norway,
https://www.dnv.com/energy/standards-guidelines/dnv-st-0437-loads-and-site-conditions-for-wind-turbines.html (last access: November 2016), 2016.
DNV: Fatigue Design of Offshore Steel Structures: DNVGL-RP-C203, DNV GL AS,
https://www.dnv.com/oilgas/download/dnv-rp-c203-fatigue-design-of-offshore-steel-structures.html (last access date: September 2019), 2019.
EASA: Certification Specifications for Large Aeroplanes (CS-25),
https://www.easa.europa.eu/en/document-library/certification-specifications/group/cs-25-large-aeroplanes#cs-25-large-aeroplanes (last access: 10 January 2023), 2020.
Hectors, K. and De Waele, W.: Cumulative Damage and Life Prediction Models for High-Cycle Fatigue of Metals: A Review, Metals, 11, 204, https://doi.org/10.3390/met11020204, 2021.
Hsiao, A., Lee, W., and Basaran, C.: A review of damage, void evolution and fatigue life prediction models, Metals, 11, 609, https://doi.org/10.3390/met11040609, 2021.
Hübler, C., Weijtjens, W., Rolfes, R., and Devriendt, C.: Reliability analysis of fatigue damage extrapolations of wind turbines using offshore strain measurements, J. Phys.: Conf. Ser., 1037, 2035, https://doi.org/10.1088/1742-6596/1037/3/032035, 2018.
IEC: IEC-61400-13, Measurement of mechanical loads,
https://webstore.iec.ch/publication/68197 (last access: 3 December 2021), 2001.
Iliopoulos, A., Weijtjens, W., Van Hemelrijck, D., and Devriendt, C.: Fatigue assessment of offshore wind turbines on monopile foundations using multi-band modal expansion, Wind Energy, 20, 1463–1479, https://doi.org/10.1002/we.2104, 2017.
Larsen, G. C. and Thomsen, K.: Low cycle fatigue loads, Risoe-R No. 913(EN), Forskningscenter Risoe, Denmark,
https://findit.dtu.dk/en/catalog/537f105074bed2fd2100b4f6 (last access: 1 October 2023), 1996.
Laszlo, A., Bhattacharya, S., Macdonald, J., and Hogan, J.: Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI, Soil Dynam. Earthq. Eng., 83, 18–32, https://doi.org/10.1016/j.soildyn.2015.12.011, 2016.
Marsh, G., Wignall, C., Thies, P. R., Barltrop, N., Incecik, A., Venugopal, V., and Johanning, L.: Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation, Int. J. Fatigue, 82, 757–765, https://doi.org/10.1016/j.ijfatigue.2015.10.007, 2016.
Miner, M. A.: Cumulative Damage in Fatigue, J. Appl. Mech., 12, 159–164, https://doi.org/10.1115/1.4009458, 1945.
Natarajan, A.: Damage equivalent load synthesis and stochastic extrapolation for fatigue life validation, Wind Energ. Sci., 7, 1171–1181, https://doi.org/10.5194/wes-7-1171-2022, 2022.
Noppe, N., Hübler, C., Devriendt, C., and Weijtjens, W.: Validated extrapolation of measured damage within an offshore wind farm using instrumented fleet leaders, J. Phys.: Conf. Ser., 1618, 022005, https://doi.org/10.1088/1742-6596/1618/2/022005, 2020.
Pacheco, J., Pimenta, F., Pereira, S., Cunha, Á., and Magalhães, F.: Fatigue Assessment of Wind Turbine Towers: Review of Processing Strategies with Illustrative Case Study, Energies, 15, 4782, https://doi.org/10.3390/en15134782, 2022.
Pakenham, B., Ermakova, A., and Mehmanparast, A.: A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments, Energies, 14, 1936, https://doi.org/10.3390/en14071936, 2021.
Palmgren, A. G.: Die Lebensdauer von Kugellagern – Life Length of Roller Bearings, VDI Zeitschrift – Zeitschrift des Vereines Deutscher Ingenieure, ISSN 0341–7258, 1924.
Sadeghi, N., Robbelein, K., D'Antuono, P., Noppe, N., Weijtjens, W., and Devriendt, C.: Fatigue damage calculation of offshore wind turbines' longterm data considering the low-frequency fatigue dynamics, J. Phys.: Conf. Ser., 2265, 032063, https://doi.org/10.1088/1742-6596/2265/3/032063, 2022.
Socie, D.: Rainflow Cycle Counting: A Historical Perspective, in: The Rainflow Method in Fatigue, Butterworth-Heinemann, 3–10, ISBN 9781483161426, 1992.
Sutherland, H.: On the Fatigue Analysis of Wind Turbines, Sandia National Laboratories, USA, https://doi.org/10.2172/9460, 1999.
Weijtens, W., Noppe, N., Verbelen, T., Iliopoulos, A., and Devriendt, C.: Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm, J. Phys.: Conf. Ser., 753, 092018, https://doi.org/10.1088/1742-6596/753/9/092018, 2016.