Articles | Volume 8, issue 3
https://doi.org/10.5194/wes-8-401-2023
https://doi.org/10.5194/wes-8-401-2023
Research article
 | 
24 Mar 2023
Research article |  | 24 Mar 2023

Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model

Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort

Related authors

Load assessment of a wind farm considering negative and positive yaw misalignment for wake steering
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-6,https://doi.org/10.5194/wes-2024-6, 2024
Revised manuscript accepted for WES
Short summary
Enabling control co-design of the next generation of wind power plants
Andrew P. J. Stanley, Christopher J. Bay, and Paul Fleming
Wind Energ. Sci., 8, 1341–1350, https://doi.org/10.5194/wes-8-1341-2023,https://doi.org/10.5194/wes-8-1341-2023, 2023
Short summary
A comparison of eight optimization methods applied to a wind farm layout optimization problem
Jared J. Thomas, Nicholas F. Baker, Paul Malisani, Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, John Jasa, Christopher Bay, Federico Tilli, David Bieniek, Nick Robinson, Andrew P. J. Stanley, Wesley Holt, and Andrew Ning
Wind Energ. Sci., 8, 865–891, https://doi.org/10.5194/wes-8-865-2023,https://doi.org/10.5194/wes-8-865-2023, 2023
Short summary
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024,https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024,https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024,https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
A Numerical Investigation of Multirotor Systems with Vortex-Generating Modes for Regenerative Wind Energy: Validation Against Experimental Data
Flavio Avila Correia Martins, Alexander van Zuijlen, and Carlos Simao Ferreira
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-72,https://doi.org/10.5194/wes-2024-72, 2024
Revised manuscript accepted for WES
Short summary
Improvements to the dynamic wake meandering model by incorporating the turbulent Schmidt number
Peter Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 9, 1363–1379, https://doi.org/10.5194/wes-9-1363-2024,https://doi.org/10.5194/wes-9-1363-2024, 2024
Short summary

Cited articles

Allaerts, D., Quon, E., Draxl, C., and Churchfield, M.: Development of a Time–Height Profile Assimilation Technique for Large-Eddy Simulation, Bound.-Lay. Meteorol., 176, 329–348, https://doi.org/10.1007/s10546-020-00538-5, 2020. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energy, 70, 116–123, 2014. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. a, b
Bastankhah, M., Welch, B. L., Martínez-Tossas, L. A., King, J., and Fleming, P.: Analytical solution for the cumulative wake of wind turbines in wind farms, J. Fluid Mech., 911, A53, https://doi.org/10.1017/jfm.2020.1037, 2021. a, b, c, d, e, f, g
Blondel, F. and Cathelain, M.: An alternative form of the super-Gaussian wind turbine wake model, Wind Energ. Sci., 5, 1225–1236, https://doi.org/10.5194/wes-5-1225-2020, 2020. a, b, c, d, e, f
Download
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Altmetrics
Final-revised paper
Preprint