Articles | Volume 8, issue 3
https://doi.org/10.5194/wes-8-401-2023
https://doi.org/10.5194/wes-8-401-2023
Research article
 | 
24 Mar 2023
Research article |  | 24 Mar 2023

Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model

Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort

Related authors

Introduction and comparison of novel deep learning and optimization approaches to analytical wake modeling of a tilted wind turbine
James Cutler, Christopher Bay, and Andrew Ning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-172,https://doi.org/10.5194/wes-2024-172, 2025
Preprint under review for WES
Short summary
Load assessment of a wind farm considering negative and positive yaw misalignment for wake steering
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-6,https://doi.org/10.5194/wes-2024-6, 2024
Revised manuscript accepted for WES
Short summary
Enabling control co-design of the next generation of wind power plants
Andrew P. J. Stanley, Christopher J. Bay, and Paul Fleming
Wind Energ. Sci., 8, 1341–1350, https://doi.org/10.5194/wes-8-1341-2023,https://doi.org/10.5194/wes-8-1341-2023, 2023
Short summary
A comparison of eight optimization methods applied to a wind farm layout optimization problem
Jared J. Thomas, Nicholas F. Baker, Paul Malisani, Erik Quaeghebeur, Sebastian Sanchez Perez-Moreno, John Jasa, Christopher Bay, Federico Tilli, David Bieniek, Nick Robinson, Andrew P. J. Stanley, Wesley Holt, and Andrew Ning
Wind Energ. Sci., 8, 865–891, https://doi.org/10.5194/wes-8-865-2023,https://doi.org/10.5194/wes-8-865-2023, 2023
Short summary
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Proof of concept for multirotor systems with vortex-generating modes for regenerative wind energy: a study based on numerical simulations and experimental data
Flavio Avila Correia Martins, Alexander van Zuijlen, and Carlos Simão Ferreira
Wind Energ. Sci., 10, 41–58, https://doi.org/10.5194/wes-10-41-2025,https://doi.org/10.5194/wes-10-41-2025, 2025
Short summary
Direct integration of non-axisymmetric Gaussian wind-turbine wake including yaw and wind-veer effects
Karim Ali, Pablo Ouro, and Tim Stallard
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-107,https://doi.org/10.5194/wes-2024-107, 2024
Revised manuscript accepted for WES
Short summary
Convergence and efficiency of global bases using proper orthogonal decomposition for capturing wind turbine wake aerodynamics
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-81,https://doi.org/10.5194/wes-2024-81, 2024
Revised manuscript accepted for WES
Short summary
Turbine- and farm-scale power losses in wind farms: an alternative to wake and farm blockage losses
Andrew Kirby, Takafumi Nishino, Luca Lanzilao, Thomas D. Dunstan, and Johan Meyers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-79,https://doi.org/10.5194/wes-2024-79, 2024
Revised manuscript accepted for WES
Short summary
Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm
Diederik van Binsbergen, Pieter-Jan Daems, Timothy Verstraeten, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci., 9, 1507–1526, https://doi.org/10.5194/wes-9-1507-2024,https://doi.org/10.5194/wes-9-1507-2024, 2024
Short summary

Cited articles

Allaerts, D., Quon, E., Draxl, C., and Churchfield, M.: Development of a Time–Height Profile Assimilation Technique for Large-Eddy Simulation, Bound.-Lay. Meteorol., 176, 329–348, https://doi.org/10.1007/s10546-020-00538-5, 2020. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energy, 70, 116–123, 2014. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. a, b
Bastankhah, M., Welch, B. L., Martínez-Tossas, L. A., King, J., and Fleming, P.: Analytical solution for the cumulative wake of wind turbines in wind farms, J. Fluid Mech., 911, A53, https://doi.org/10.1017/jfm.2020.1037, 2021. a, b, c, d, e, f, g
Blondel, F. and Cathelain, M.: An alternative form of the super-Gaussian wind turbine wake model, Wind Energ. Sci., 5, 1225–1236, https://doi.org/10.5194/wes-5-1225-2020, 2020. a, b, c, d, e, f
Download
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Altmetrics
Final-revised paper
Preprint