Articles | Volume 8, issue 3
https://doi.org/10.5194/wes-8-433-2023
https://doi.org/10.5194/wes-8-433-2023
Research article
 | 
29 Mar 2023
Research article |  | 29 Mar 2023

Validation of turbulence intensity as simulated by the Weather Research and Forecasting model off the US northeast coast

Sheng-Lun Tai, Larry K. Berg, Raghavendra Krishnamurthy, Rob Newsom, and Anthony Kirincich

Related authors

A 1 km soil moisture data over eastern CONUS generated through assimilating SMAP data into the Noah-MP land surface model
Sheng-Lun Tai, Zhao Yang, Brian Gaudet, Koichi Sakaguchi, Larry Berg, Colleen Kaul, Yun Qian, Ye Liu, and Jerome Fast
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-599,https://doi.org/10.5194/essd-2024-599, 2025
Preprint under review for ESSD
Short summary
Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022,https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Observations of wind farm wake recovery at an operating wind farm
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025,https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Periods of constant wind speed: how long do they last in the turbulent atmospheric boundary layer?
Daniela Moreno, Jan Friedrich, Matthias Wächter, Jörg Schwarte, and Joachim Peinke
Wind Energ. Sci., 10, 347–360, https://doi.org/10.5194/wes-10-347-2025,https://doi.org/10.5194/wes-10-347-2025, 2025
Short summary
Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025,https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Simulations suggest offshore wind farms modify low-level jets
Daphne Quint, Julie K. Lundquist, and David Rosencrans
Wind Energ. Sci., 10, 117–142, https://doi.org/10.5194/wes-10-117-2025,https://doi.org/10.5194/wes-10-117-2025, 2025
Short summary
On the lidar-turbulence paradox and possible countermeasures
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025,https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary

Cited articles

Arthur, R. S., Juliano, T. W., Adler, B., Krishnamurthy, R., Lundquist, J. K., Kosović, B., and Jiménez, P. A.: Improved Representation of Horizontal Variability and Turbulence in Mesoscale Simulations of an Extended Cold-Air Pool Event, J. Appl. Meteorol. Clim., 61, 685–707, https://doi.org/10.1175/JAMC-D-21-0138.1, 2022. 
Austin T. C., Edson, J. B., McGillis, W. R., von Alt, C., Purcell, M. J., Petitt, R., McElroy, M. K., Ware, J., and Stokey, R.: The Martha's Vineyard Coastal Observatory: A long term facility for monitoring air-sea processes, in: Proc. MTS/IEEE OCEANS, https://ieeexplore.ieee.org/abstract/document/882223 (last access: 28 March 2023), 1937–1941, 2000. 
Bardal, L. M. and Sætran, L. R.: Influence of turbulence intensity on wind turbine power curves, Energ. Proced., 137, 553–558, https://doi.org/10.1016/j.egypro.2017.10.384, 2017. 
Bardal, L. M., Onstad, A. E., Sætran, L. R., and Lund, J. A.: Evaluation of methods for estimating atmospheric stability at two coastal sites, Wind Eng., 42, 561–575, https://doi.org/10.1177/0309524X18780378, 2018. 
Barthelmie, R. J., Frandsen, S. T., Nielsen, M. N., Pryor, S. C., Rethore, P.-E., and Jørgensen, H. E.: Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm, Wind Energy, 10, 517–528, https://doi.org/10.1002/we.238, 2007. 
Download
Short summary
Turbulence intensity is critical for wind turbine design and operation as it affects wind power generation efficiency. Turbulence measurements in the marine environment are limited. We use a model to derive turbulence intensity and test how sea surface temperature data may impact the simulated turbulence intensity and atmospheric stability. The model slightly underestimates turbulence, and improved sea surface temperature data reduce the bias. Error with unrealistic mesoscale flow is identified.
Share
Altmetrics
Final-revised paper
Preprint