Articles | Volume 9, issue 8
https://doi.org/10.5194/wes-9-1747-2024
https://doi.org/10.5194/wes-9-1747-2024
Research article
 | 
20 Aug 2024
Research article |  | 20 Aug 2024

Uncertainty quantification of structural blade parameters for the aeroelastic damping of wind turbines: a code-to-code comparison

Hendrik Verdonck, Oliver Hach, Jelmer D. Polman, Otto Schramm, Claudio Balzani, Sarah Müller, and Johannes Rieke

Related authors

On the influence of cross-sectional deformations on the aerodynamic performance of wind turbine rotor blades
Julia Sabrina Gebauer, Felix Konstantin Prigge, Dominik Ahrens, Lars Wein, and Claudio Balzani
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-91,https://doi.org/10.5194/wes-2024-91, 2024
Revised manuscript accepted for WES
Short summary
Comparison of different cross-sectional approaches for the structural design and optimization of composite wind turbine blades based on beam models
Edgar Werthen, Daniel Hardt, Claudio Balzani, and Christian Hühne
Wind Energ. Sci., 9, 1465–1481, https://doi.org/10.5194/wes-9-1465-2024,https://doi.org/10.5194/wes-9-1465-2024, 2024
Short summary
Non-proportionality analysis of multiaxial fatigue stress histories in trailing edge adhesive joints of wind turbine rotor blades
Claudio Balzani and Pablo Noever Castelos
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-167,https://doi.org/10.5194/wes-2023-167, 2024
Preprint under review for WES
Short summary
Model updating of a wind turbine blade finite element Timoshenko beam model with invertible neural networks
Pablo Noever-Castelos, David Melcher, and Claudio Balzani
Wind Energ. Sci., 7, 623–645, https://doi.org/10.5194/wes-7-623-2022,https://doi.org/10.5194/wes-7-623-2022, 2022
Short summary
Validation of a modeling methodology for wind turbine rotor blades based on a full-scale blade test
Pablo Noever-Castelos, Bernd Haller, and Claudio Balzani
Wind Energ. Sci., 7, 105–127, https://doi.org/10.5194/wes-7-105-2022,https://doi.org/10.5194/wes-7-105-2022, 2022
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Dynamics and aeroservoelasticity
Investigating the interactions between wakes and floating wind turbines using FAST.Farm
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024,https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Experimental validation of a short-term damping estimation method for wind turbines in nonstationary operating conditions
Kristian Ladefoged Ebbehøj, Philippe Jacques Couturier, Lars Morten Sørensen, and Jon Juel Thomsen
Wind Energ. Sci., 9, 1005–1024, https://doi.org/10.5194/wes-9-1005-2024,https://doi.org/10.5194/wes-9-1005-2024, 2024
Short summary
A digital twin solution for floating offshore wind turbines validated using a full-scale prototype
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024,https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Extending the dynamic wake meandering model in HAWC2Farm: a comparison with field measurements at the Lillgrund wind farm
Jaime Liew, Tuhfe Göçmen, Alan W. H. Lio, and Gunner Chr. Larsen
Wind Energ. Sci., 8, 1387–1402, https://doi.org/10.5194/wes-8-1387-2023,https://doi.org/10.5194/wes-8-1387-2023, 2023
Short summary

Cited articles

Abbiati, G., Marelli, S., Tsokanas, N., Sudret, B., and Stojadinović, B.: A global sensitivity analysis framework for hybrid simulation, Mech. Syst. Signal Pr., 146, 964–979, https://doi.org/10.1016/j.ymssp.2020.106997, 2021. a
Bir, G.: Multi-Blade Coordinate Transformation and its Application to Wind Turbine Analysis, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reno, Nevada, 7–10 January 2008, https://doi.org/10.2514/6.2008-1300, 2008. a
Blasques, J. P., Bitsche, R. D., Fedorov, V., and Lazarov, B. S.: Accuracy of an efficient framework for structural analysis of wind turbine blades, Wind Energy, 19, 1603–1621, https://doi.org/10.1002/we.1939, 2016. a
Bortolotti, P., Canet, H., Bottasso, C. L., and Loganathan, J.: Performance of non-intrusive uncertainty quantification in the aeroservoelastic simulation of wind turbines, Wind Energ. Sci., 4, 397–406, https://doi.org/10.5194/wes-4-397-2019, 2019. a
Caboni, M., Carrion, M., Rodriguez, C., Schepers, G., Boorsma, K., and Sanderse, B.: Assessment of sensitivity and accuracy of BEM-based aeroelastic models on wind turbine load predictions, J. Phys. Conf. Ser., 1618, 042015, https://doi.org/10.1088/1742-6596/1618/4/042015, 2020. a
Download
Short summary
Aeroelastic stability simulations are needed to guarantee the safety and overall robust design of wind turbines. To increase our confidence in these simulations in the future, the sensitivity of the stability analysis with respect to variability in the structural properties of the wind turbine blades is investigated. Multiple state-of-the-art tools are compared and the study shows that even though the tools predict similar stability behavior, the sensitivity might be significantly different.
Altmetrics
Final-revised paper
Preprint